In this paper, we attempt to give a unified approach to the existing several versions of Ekeland's variational principle. In the framework of uniiorm spaces, we introduce p-distances and more generally, q-distances....In this paper, we attempt to give a unified approach to the existing several versions of Ekeland's variational principle. In the framework of uniiorm spaces, we introduce p-distances and more generally, q-distances. Then we introduce a new type of completeness for uniform spaces, i.e., sequential completeness with respect to a q-distance (particularly, a p-distance), which is a very extensive concept of completeness. By using q-distances and the new type of completeness, we prove a generalized Takahashi's nonconvex minimization theorem, a generalized Ekeland's variational principle and a generalized Caristi's fixed point theorem. Moreover, we show that the above three theorems are equivalent to each other. From the generalized Ekeland's variational principle, we deduce a number of particular versions of Ekeland's principle, which include many known versions of the principle and their improvements.展开更多
By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a ne...By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a new version of Ekeland's variational principle for set-valued maps, which is expressed by the existence of strict approximate minimizer for a set-valued optimization problem. In this paper, we give an improvement of Ha's version of set-valued Ekeland's variational principle. Our proof is direct and it need not use Dancs-Hegedus-Medvegyev theorem. From the improved Ha's version, we deduce a Caristi-Kirk's fixed point theorem and a Takahashi's nonconvex minimization theorem for set-valued maps. Moreover, we prove that the above three theorems are equivalent to each other.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.10871141)
文摘In this paper, we attempt to give a unified approach to the existing several versions of Ekeland's variational principle. In the framework of uniiorm spaces, we introduce p-distances and more generally, q-distances. Then we introduce a new type of completeness for uniform spaces, i.e., sequential completeness with respect to a q-distance (particularly, a p-distance), which is a very extensive concept of completeness. By using q-distances and the new type of completeness, we prove a generalized Takahashi's nonconvex minimization theorem, a generalized Ekeland's variational principle and a generalized Caristi's fixed point theorem. Moreover, we show that the above three theorems are equivalent to each other. From the generalized Ekeland's variational principle, we deduce a number of particular versions of Ekeland's principle, which include many known versions of the principle and their improvements.
基金Supported by National Natural Science Foundation of China(Grant No.10871141)
文摘By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a new version of Ekeland's variational principle for set-valued maps, which is expressed by the existence of strict approximate minimizer for a set-valued optimization problem. In this paper, we give an improvement of Ha's version of set-valued Ekeland's variational principle. Our proof is direct and it need not use Dancs-Hegedus-Medvegyev theorem. From the improved Ha's version, we deduce a Caristi-Kirk's fixed point theorem and a Takahashi's nonconvex minimization theorem for set-valued maps. Moreover, we prove that the above three theorems are equivalent to each other.