The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz Joh...The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.展开更多
By using cone-directed contingent derivatives, the unified necessary and sufficient optimality conditions are given for weakly and strongly minimal elements respectively in generalized preinvex set-valued optimization.
The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperatio...The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperation theorem, Kuhn-Tucker's, Lagrange's and saddle points optimality conditions, the necessary conditions are obtained for the set-valued optimization problem to attain its super efficient solutions. Also, the sufficient conditions for Kuhn-Tucker's, Lagrange's and saddle points optimality conditions are derived.展开更多
The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function...The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function were introduced, from which the properties of the corresponding contingent cone and the alpha-order contingent derivative were studied. Finally, the optimality Kuhn-Tucker condition and the Wolfe duality theorem for the alpha-order S-preinvex set-valued optimization were presented with the help of the alpha-order contingent derivative.展开更多
The definitions of cone-subconvexlike set-valued maps and generalized cone-subconvexlike set-valued maps in topological vector spaces are defined by using the relative interiors of ordering cone. The relationships bet...The definitions of cone-subconvexlike set-valued maps and generalized cone-subconvexlike set-valued maps in topological vector spaces are defined by using the relative interiors of ordering cone. The relationships between the two classes of set-valued maps are investigated, and some properties of them are shown. A Gordan type alternative theorem under the assumption of generalized cone-subconvexlikeness of set-valued maps is proved by applying convex separation theorems involving the relative interiors in infinite dimensional spaces. Finally a necessary optimality condition theorem is shown for a general kind of set-valued vector optimization in a sense of weak E-minimizer.展开更多
This paper deals with higher-order optimality conditions for Henig effcient solutions of set-valued optimization problems.By virtue of the higher-order tangent sets, necessary and suffcient conditions are obtained for...This paper deals with higher-order optimality conditions for Henig effcient solutions of set-valued optimization problems.By virtue of the higher-order tangent sets, necessary and suffcient conditions are obtained for Henig effcient solutions of set-valued optimization problems whose constraint condition is determined by a fixed set.展开更多
This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary an...This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.展开更多
In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly prope...In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly properly efficient solutions of set-valued optimization problem.展开更多
The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of...The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of many machine learning techniques with data parallelism,such as deep learning and federated learning.We propose a distributed primal-dual stochastic gradient descent(SGD)algorithm,suitable for arbitrarily connected communication networks and any smooth(possibly nonconvex)cost functions.We show that the proposed algorithm achieves the linear speedup convergence rate O(1/(√nT))for general nonconvex cost functions and the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies the Polyak-Lojasiewicz(P-L)condition,where T is the total number of iterations.We also show that the output of the proposed algorithm with constant parameters linearly converges to a neighborhood of a global optimum.We demonstrate through numerical experiments the efficiency of our algorithm in comparison with the baseline centralized SGD and recently proposed distributed SGD algorithms.展开更多
Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recov...Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods.展开更多
In this paper, we prove the global convergence of the Perry-Shanno’s memoryless quasi-Newton (PSMQN) method with a new inexact line search when applied to nonconvex unconstrained minimization problems. Preliminary nu...In this paper, we prove the global convergence of the Perry-Shanno’s memoryless quasi-Newton (PSMQN) method with a new inexact line search when applied to nonconvex unconstrained minimization problems. Preliminary numerical results show that the PSMQN with the particularly line search conditions are very promising.展开更多
This paper addresses the distributed optimization problem of discrete-time multiagent systems with nonconvex control input constraints and switching topologies.We introduce a novel distributed optimization algorithm w...This paper addresses the distributed optimization problem of discrete-time multiagent systems with nonconvex control input constraints and switching topologies.We introduce a novel distributed optimization algorithm with a switching mechanism to guarantee that all agents eventually converge to an optimal solution point,while their control inputs are constrained in their own nonconvex region.It is worth noting that the mechanism is performed to tackle the coexistence of the nonconvex constraint operator and the optimization gradient term.Based on the dynamic transformation technique,the original nonlinear dynamic system is transformed into an equivalent one with a nonlinear error term.By utilizing the nonnegative matrix theory,it is shown that the optimization problem can be solved when the union of switching communication graphs is jointly strongly connected.Finally,a numerical simulation example is used to demonstrate the acquired theoretical results.展开更多
In this paper, our focus lies on addressing a two-block linearly constrained nonseparable nonconvex optimization problem with coupling terms. The most classical algorithm, the alternating direction method of multiplie...In this paper, our focus lies on addressing a two-block linearly constrained nonseparable nonconvex optimization problem with coupling terms. The most classical algorithm, the alternating direction method of multipliers (ADMM), is employed to solve such problems typically, which still requires the assumption of the gradient Lipschitz continuity condition on the objective function to ensure overall convergence from the current knowledge. However, many practical applications do not adhere to the conditions of smoothness. In this study, we justify the convergence of variant Bregman ADMM for the problem with coupling terms to circumvent the issue of the global Lipschitz continuity of the gradient. We demonstrate that the iterative sequence generated by our approach converges to a critical point of the issue when the corresponding function fulfills the Kurdyka-Lojasiewicz inequality and certain assumptions apply. In addition, we illustrate the convergence rate of the algorithm.展开更多
The margin maximization problem in digital subscriber line(DSL) systems is investigated.The particle swarm optimization(PSO) theory is applied to the nonconvex margin optimization problem with the target power and...The margin maximization problem in digital subscriber line(DSL) systems is investigated.The particle swarm optimization(PSO) theory is applied to the nonconvex margin optimization problem with the target power and rate constraints.PSO is a new evolution algorithm based on the social behavior of swarms, which can solve discontinuous, nonconvex and nonlinear problems efficiently.The proposed algorithm can converge to the global optimal solution, and numerical example demonstrates that the proposed algorithm can guarantee the fast convergence within a few iterations.展开更多
This paper considers the NP (Non-deterministic Polynomial)-hard problem of finding a minimum value of a quadratic program (QP), subject to m non-convex inhomogeneous quadratic constraints. One effective algorithm is p...This paper considers the NP (Non-deterministic Polynomial)-hard problem of finding a minimum value of a quadratic program (QP), subject to m non-convex inhomogeneous quadratic constraints. One effective algorithm is proposed to get a feasible solution based on the optimal solution of its semidefinite programming (SDP) relaxation problem.展开更多
There are two approaches of defining the solutions of a set-valued optimization problem: vector criterion and set criterion. This note is devoted to higher-order optimality conditions using both criteria of solutions...There are two approaches of defining the solutions of a set-valued optimization problem: vector criterion and set criterion. This note is devoted to higher-order optimality conditions using both criteria of solutions for a constrained set-valued optimization problem in terms of higher-order radial derivatives. In the case of vector criterion, some optimality conditions are derived for isolated (weak) minimizers. With set criterion, necessary and sufficient optimality conditions are established for minimal solutions relative to lower set-order relation.展开更多
This paper deals with approximate weak minimal solutions of set-valued optimization problems under vector and set optimality criteria.The relationships between various concepts of approximate weak minimal solutions ar...This paper deals with approximate weak minimal solutions of set-valued optimization problems under vector and set optimality criteria.The relationships between various concepts of approximate weak minimal solutions are investigated.Some topological properties and existence theorems of these solutions are given.It is shown that for set-valued optimization problems with upper(outer)cone-semicontinuous objective values or closed objective maps the approximate weak minimal and strictly approximate lower weak minimal solution sets are closed.By using the polar cone and two scalarization processes,some necessary and sufficient optimality conditions in the sense of vector and set criteria are provided.展开更多
针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化...针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化处理,并在x-子问题中引入惯性效应。在适当的假设条件下,建立了算法的全局收敛性;同时引入满足Kurdyka-Lojasiewicz不等式的辅助函数,验证了算法的强收敛性。通过两个数值实验表明,引入惯性效应的算法比没有惯性效应的算法收敛性能更好。展开更多
基金the National Natural Science Foundation(69972036) and the Natural Science Foundation of Shanxi province(995L02)
文摘The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.
基金Supported by the National Natural Science Foundation of China (10571035)
文摘By using cone-directed contingent derivatives, the unified necessary and sufficient optimality conditions are given for weakly and strongly minimal elements respectively in generalized preinvex set-valued optimization.
基金Supported by the National Natural Science Foundation of China (10461007)the Science and Technology Foundation of the Education Department of Jiangxi Province (GJJ09069)
文摘The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperation theorem, Kuhn-Tucker's, Lagrange's and saddle points optimality conditions, the necessary conditions are obtained for the set-valued optimization problem to attain its super efficient solutions. Also, the sufficient conditions for Kuhn-Tucker's, Lagrange's and saddle points optimality conditions are derived.
基金Project supported by the National Natural Science Foundation of China (No. 10371024) the Natural Science Foundation of Zhejiang Province (No.Y604003)
文摘The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function were introduced, from which the properties of the corresponding contingent cone and the alpha-order contingent derivative were studied. Finally, the optimality Kuhn-Tucker condition and the Wolfe duality theorem for the alpha-order S-preinvex set-valued optimization were presented with the help of the alpha-order contingent derivative.
文摘The definitions of cone-subconvexlike set-valued maps and generalized cone-subconvexlike set-valued maps in topological vector spaces are defined by using the relative interiors of ordering cone. The relationships between the two classes of set-valued maps are investigated, and some properties of them are shown. A Gordan type alternative theorem under the assumption of generalized cone-subconvexlikeness of set-valued maps is proved by applying convex separation theorems involving the relative interiors in infinite dimensional spaces. Finally a necessary optimality condition theorem is shown for a general kind of set-valued vector optimization in a sense of weak E-minimizer.
基金Supported by the National Natural Science Foundation of China(10871216) Supported by the Science and Technology Research Project of Chongqing Municipal Education Commission(KJ100419) Supported by the Natural Science Foundation Project of CQ CSTC(cstcjjA00019)
文摘This paper deals with higher-order optimality conditions for Henig effcient solutions of set-valued optimization problems.By virtue of the higher-order tangent sets, necessary and suffcient conditions are obtained for Henig effcient solutions of set-valued optimization problems whose constraint condition is determined by a fixed set.
文摘This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.
文摘In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly properly efficient solutions of set-valued optimization problem.
基金supported by the Knut and Alice Wallenberg Foundationthe Swedish Foundation for Strategic Research+1 种基金the Swedish Research Councilthe National Natural Science Foundation of China(62133003,61991403,61991404,61991400)。
文摘The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of many machine learning techniques with data parallelism,such as deep learning and federated learning.We propose a distributed primal-dual stochastic gradient descent(SGD)algorithm,suitable for arbitrarily connected communication networks and any smooth(possibly nonconvex)cost functions.We show that the proposed algorithm achieves the linear speedup convergence rate O(1/(√nT))for general nonconvex cost functions and the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies the Polyak-Lojasiewicz(P-L)condition,where T is the total number of iterations.We also show that the output of the proposed algorithm with constant parameters linearly converges to a neighborhood of a global optimum.We demonstrate through numerical experiments the efficiency of our algorithm in comparison with the baseline centralized SGD and recently proposed distributed SGD algorithms.
基金Projects(61173122,61262032) supported by the National Natural Science Foundation of ChinaProjects(11JJ3067,12JJ2038) supported by the Natural Science Foundation of Hunan Province,China
文摘Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods.
文摘In this paper, we prove the global convergence of the Perry-Shanno’s memoryless quasi-Newton (PSMQN) method with a new inexact line search when applied to nonconvex unconstrained minimization problems. Preliminary numerical results show that the PSMQN with the particularly line search conditions are very promising.
基金Project supported by the National Engineering Research Center of Rail Transportation Operation and Control System,Beijing Jiaotong University(Grant No.NERC2019K002)。
文摘This paper addresses the distributed optimization problem of discrete-time multiagent systems with nonconvex control input constraints and switching topologies.We introduce a novel distributed optimization algorithm with a switching mechanism to guarantee that all agents eventually converge to an optimal solution point,while their control inputs are constrained in their own nonconvex region.It is worth noting that the mechanism is performed to tackle the coexistence of the nonconvex constraint operator and the optimization gradient term.Based on the dynamic transformation technique,the original nonlinear dynamic system is transformed into an equivalent one with a nonlinear error term.By utilizing the nonnegative matrix theory,it is shown that the optimization problem can be solved when the union of switching communication graphs is jointly strongly connected.Finally,a numerical simulation example is used to demonstrate the acquired theoretical results.
文摘In this paper, our focus lies on addressing a two-block linearly constrained nonseparable nonconvex optimization problem with coupling terms. The most classical algorithm, the alternating direction method of multipliers (ADMM), is employed to solve such problems typically, which still requires the assumption of the gradient Lipschitz continuity condition on the objective function to ensure overall convergence from the current knowledge. However, many practical applications do not adhere to the conditions of smoothness. In this study, we justify the convergence of variant Bregman ADMM for the problem with coupling terms to circumvent the issue of the global Lipschitz continuity of the gradient. We demonstrate that the iterative sequence generated by our approach converges to a critical point of the issue when the corresponding function fulfills the Kurdyka-Lojasiewicz inequality and certain assumptions apply. In addition, we illustrate the convergence rate of the algorithm.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars (60525303)the National Natural Science Foundation of China (60904048+2 种基金 60404022 60604012)the Natural Science Foundation of Hebei province (F2005000390)
文摘The margin maximization problem in digital subscriber line(DSL) systems is investigated.The particle swarm optimization(PSO) theory is applied to the nonconvex margin optimization problem with the target power and rate constraints.PSO is a new evolution algorithm based on the social behavior of swarms, which can solve discontinuous, nonconvex and nonlinear problems efficiently.The proposed algorithm can converge to the global optimal solution, and numerical example demonstrates that the proposed algorithm can guarantee the fast convergence within a few iterations.
文摘This paper considers the NP (Non-deterministic Polynomial)-hard problem of finding a minimum value of a quadratic program (QP), subject to m non-convex inhomogeneous quadratic constraints. One effective algorithm is proposed to get a feasible solution based on the optimal solution of its semidefinite programming (SDP) relaxation problem.
基金Supported by the National Natural Science Foundation of China(11361001)Natural Science Foundation of Ningxia(NZ14101)
文摘There are two approaches of defining the solutions of a set-valued optimization problem: vector criterion and set criterion. This note is devoted to higher-order optimality conditions using both criteria of solutions for a constrained set-valued optimization problem in terms of higher-order radial derivatives. In the case of vector criterion, some optimality conditions are derived for isolated (weak) minimizers. With set criterion, necessary and sufficient optimality conditions are established for minimal solutions relative to lower set-order relation.
基金Institute for Research in Fundamental Sciences(No.96580048).
文摘This paper deals with approximate weak minimal solutions of set-valued optimization problems under vector and set optimality criteria.The relationships between various concepts of approximate weak minimal solutions are investigated.Some topological properties and existence theorems of these solutions are given.It is shown that for set-valued optimization problems with upper(outer)cone-semicontinuous objective values or closed objective maps the approximate weak minimal and strictly approximate lower weak minimal solution sets are closed.By using the polar cone and two scalarization processes,some necessary and sufficient optimality conditions in the sense of vector and set criteria are provided.
文摘针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化处理,并在x-子问题中引入惯性效应。在适当的假设条件下,建立了算法的全局收敛性;同时引入满足Kurdyka-Lojasiewicz不等式的辅助函数,验证了算法的强收敛性。通过两个数值实验表明,引入惯性效应的算法比没有惯性效应的算法收敛性能更好。