期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
On nondecomposable positive definite Hermitian forms over imaginary quadratic fields
1
作者 朱福祖 《Science China Mathematics》 SCIE 2001年第1期7-14,共8页
Methods are presented for the construction of nondecomposable positive definite integral Hermitian forms over the ring of integers Rm of an imaginary quadratic field ?(√?m). Using our methods, one can construct expli... Methods are presented for the construction of nondecomposable positive definite integral Hermitian forms over the ring of integers Rm of an imaginary quadratic field ?(√?m). Using our methods, one can construct explicitly an n-ary nondecomposable positive definite Hermitian Rm-lattice ( L, h) with given discriminant 2 for every n?2 (resp. n?13 or odd n?3) and square-free m = 12 k + t with k?1 and t∈ (1,7) (resp. k?1 and t = 2 or k?0 and t∈ 5,10,11). We study also the case for discriminant different from 2. 展开更多
关键词 indecomposable lattice nondecomposable lattice dual lattice block form
原文传递
On Indecomposable Positive Definite Integral Hermitian Forms
2
作者 朱福祖 《Chinese Science Bulletin》 SCIE EI CAS 1993年第5期370-373,共4页
Let F=Q(i=m<sup>1/2</sup>(i<sup>2</sup>=-1, m】0 and square free) be an imaginary quadratic field and R<sub>m</sub> its ring of algebraic integers. The aim of this note is to cons... Let F=Q(i=m<sup>1/2</sup>(i<sup>2</sup>=-1, m】0 and square free) be an imaginary quadratic field and R<sub>m</sub> its ring of algebraic integers. The aim of this note is to construct n-ary positive definite indecomposable integral. Hermitian forms over R<sub>m</sub> with given rank and given discriminant. The word decomposition or splitting is the geometric one, i. e. lattice L has a non-trivial expression of the form L=M⊥N. If there is no such expression we call L indecomposable. There is another kind of decomposition——a more algebraic one. A positive definite Hermitian 展开更多
关键词 INDECOMPOSABLE LATTICE (form) nondecomposable LATTICE (form) EVEN LATTICE (form) minimum of a LATTICE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部