The variations of strain and permeability of coal were systematically studied through the physical simulation of N2 and water injection.The effects of fluid adsorption capacity and initial permeability on strain,perme...The variations of strain and permeability of coal were systematically studied through the physical simulation of N2 and water injection.The effects of fluid adsorption capacity and initial permeability on strain,permeability and the dominant effect of pore pressure were discussed.The adsorption strain and strain rate of coal during water injection are significantly higher than those during N2 injection.An edge of free adsorption exists in the early phase of N2 and water injection,which is related to fluid saturation.Within this boundary,the strain rate and pore pressure are independent.Moreover,the injec-tion time of initial stage accounts for about 20%of the total injection time,but the strain accounts for 70%of the total strain.For water injection,this boundary is about half of water saturation of coal.Besides,the influence of pore pressure on permeability is complex,which is controlled by adsorption capacity and initial permeability of coal.When the initial permeability is large enough,the effect of adsorption strain on permeability is relatively weak,and the promoting effect of pore pressure on fluid migration is dominant.Therefore,the permeability increases with increasing pore pressure.When the initial permeability is relatively low,the pore pressure may have a dominant role in promoting fluid migration for the fluid with weak adsorption capacity.However,for the fluid with strong adsorption capacity,the adsorption strain caused by pore pressure may play a leading role,and the permeability reduces first and then ascends with increasing pore pressure.展开更多
The impact of Cr3+ ion on the magnetic properties of Mn0.50Zn0.50CrxFe2-xO4 (with x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) has been studied. Ferrite samples were synthesized by combustion method and sintered at various te...The impact of Cr3+ ion on the magnetic properties of Mn0.50Zn0.50CrxFe2-xO4 (with x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) has been studied. Ferrite samples were synthesized by combustion method and sintered at various temperatures (1250°C, 1300°C and 1350°C). The structural properties were investigated by means of X-ray diffraction patterns and indicated that the samples possess single phase cubic spinel structure. The lattice parameter decreases with the increase in Cr3+ content, as the ionic radius of Cr3+ ion is smaller than that of Fe3+. The average grain size (D), bulk density (ρB) and initial permeability (μi’ )decreases with increase in Cr3+ content whereas porosity follows its opposite trend. The ρB was found to increase with increase in Cr3+ content as the sintering temperature (Ts) is increased from 1250°C to 1350°C. The Ts affects the densification, grain growth and (μi’ ) of the samples. The (μi’ ) strongly depends on average grain size, density and intragranular porosity. The B-H loops of the compositions were measured at room temperature. The saturation magnetization (Ms), coercivity (Hc) and hysteresis losses were studied as a function of Cr3+ content. The Ms was found to decrease with the increase of Cr3+ content, which is attributed to the dilution of A-B interaction.展开更多
The nanocrystalline structure of annealed Fe73.5 Cu1 W3Si13.5B9 alloy has been investigated by using the XRD and the TEM methods. The relation between the initial permeability and the microstructure of the annealed al...The nanocrystalline structure of annealed Fe73.5 Cu1 W3Si13.5B9 alloy has been investigated by using the XRD and the TEM methods. The relation between the initial permeability and the microstructure of the annealed alloy has been discussed. The crystalline phase in annealed Fe73.5 Cu1 W3Si13.5B9 alloy is the α-Fe(Si) phase with DO3 superstructure. The volume fraction, Si content and degree of order of the αFe(Si) phase increase with increasing annealing temperature. In the temperature range of 490-570℃, the α-Fe(Si) phase has a size of 13 nm, and its grain number increases as the annealing temperature is increased. The DO3 ordered region in the α-Fe(Si) grain is spherical approximately, and its size increases as the annealing temperature increases. The size of the DO3 ordered region is 12.8 nm at the temperature of 570℃,which is close to that of the α-Fe(Si) grain. There is obvious change in the structure of the residual amorphous phase during annealing, and the nearest atomic distance and the short-range order of residual amorphous phase reach maximum and minimum at 530℃, respectively. The initial permeability of annealed Fe73.5 Cu1 W3Si13.5 B9 alloy is not only dependent on the size, volume fraction and Si content of the α-Fe(Si) phase but also related to the structure state of the residual amorphous phase.展开更多
Due to the fact that rolling contact fatigue is not easily detected, and residual life is not easily evaluated in the early stage of bearing life, a nondestructive testing method based on initial permeability is propo...Due to the fact that rolling contact fatigue is not easily detected, and residual life is not easily evaluated in the early stage of bearing life, a nondestructive testing method based on initial permeability is proposed. By analyzing the crack propagation mechanism, a fatigue state detection system based on differential signals is designed. A simulation model of the detection of the inner ring of the pulse signal is established by using the electromagnetic field simulation software. The effects of the height of the coil, the inner and outer diameter, the number of coil turns, the diameter and the height of the ferrite core of the probe on the differential value of the detection signal are simulated. The parameter combination of the maximum difference value of the signal is used as the structural size of the sensor, and the detection sensor is designed and fabricated. Moreover, the bearing fatigue test system is designed, and the bearing is tested. The results show that the system has good detection ability for rolling contact fatigue and verifies the mechanism and trend of crack propagation in the inner ring of the bearing.展开更多
An investigation is reported on the influence of different components of high performance concrete (HPC) on the initial binding capacities (IBC) of chloride ion. The testing results demonstrate that cement has the lar...An investigation is reported on the influence of different components of high performance concrete (HPC) on the initial binding capacities (IBC) of chloride ion. The testing results demonstrate that cement has the largest IBC, and the relative binding ratio is as high as 30% of total ion amount. Among the mineral admixtures, fly ash has the largest IBC of chloride ion. The IBC of silica fume is about 14.4%, which is smaller than that of fly ash. The IBC of refined ground blast-furnace slag (microslag) is abnormal due to the influence of sulfate ion contained. The addition of superplasticizer and corrosion inhibitor containing calcium nitrite weakens the IBC of mixtures. The fluidity and pore-filling effect of mineral admixtures are studied with paste samples with WIC ratio of 0.3. The influence mechanism of various components in high-performance concrete in IBC is studied further through SEM and Mercury Instrusion Porosimetry tests with paste samples at the age of 3 days.展开更多
The optimum ferrite can be obtained through free-microstructural defects where such defects are always encountered in the conventional ferrites often caused by chemical inhomogeneity. In this study, Ni-Zn ferrite was ...The optimum ferrite can be obtained through free-microstructural defects where such defects are always encountered in the conventional ferrites often caused by chemical inhomogeneity. In this study, Ni-Zn ferrite was synthesized and fabricated by means of a sol-gel route. Thermal gravimetric analysis (TGA) was used to study the thermal transforma-tion of the ferrite in air. Parts of the sol-gel powder heated at elevated temperatures were characterized by X-ray dif-fraction (XRD) method and Scanning Electron Microscopy (SEM) to reveal the crystallized single-phase and the struc-ture of the obtained ferrite. Fourier transform infrared spectroscopy (FT-IR) was assisted to investigate the structure. The microstructures of the toroidal cores were obtained at two different sintering temperatures and compared with those obtained via the classic method. In addition to that, the magnetic properties were measured. The initial magnetic permeability was found to increase with the increasing of the frequency as a result of the domain wall motions and the corresponding loss was small. Therefore, a well defined polycrystalline microstructure ferrite via an easier preparation methodology as compared to the classic method is obtained.展开更多
CIP (complex initial permeability) spectra of PF (polycrystalline ferrite) are studied both as intrinsic and extrinsic properties. In the former case, main steps of modeling, based on effects coming from polycryst...CIP (complex initial permeability) spectra of PF (polycrystalline ferrite) are studied both as intrinsic and extrinsic properties. In the former case, main steps of modeling, based on effects coming from polycrystal grain sizes distribution and defects, are described. The obtained relations work well in practice for PF with more or less normal MS (microstructure) and no size effects. Besides, fundamental connection between parameters of CIP and MS is found. Another case--PF with possible size effects (MnZn-ferrites) are studied experimentally for different sizes of cores, unveiling the dependence of phenomena on: dimensions of cross-section, number of turns, width of nonmagnetic gap.展开更多
基金supported by the National Natural Science Foundation of China(41872170,42072189)China Postdoctoral Science Foundation(2021M690916)+3 种基金Key Science and Technology Program of Henan Province(222102320154)State Key Laboratory Cultivation Base for Gas Geology and Gas Control(Henan Polytechnic University)(WS2020B10)Key Scientific Research Projects of Colleges and Universities in Henan Province(21A440006)Doctor foundation of Henan Polytechnic University(B2020-6,B2021-5).
文摘The variations of strain and permeability of coal were systematically studied through the physical simulation of N2 and water injection.The effects of fluid adsorption capacity and initial permeability on strain,permeability and the dominant effect of pore pressure were discussed.The adsorption strain and strain rate of coal during water injection are significantly higher than those during N2 injection.An edge of free adsorption exists in the early phase of N2 and water injection,which is related to fluid saturation.Within this boundary,the strain rate and pore pressure are independent.Moreover,the injec-tion time of initial stage accounts for about 20%of the total injection time,but the strain accounts for 70%of the total strain.For water injection,this boundary is about half of water saturation of coal.Besides,the influence of pore pressure on permeability is complex,which is controlled by adsorption capacity and initial permeability of coal.When the initial permeability is large enough,the effect of adsorption strain on permeability is relatively weak,and the promoting effect of pore pressure on fluid migration is dominant.Therefore,the permeability increases with increasing pore pressure.When the initial permeability is relatively low,the pore pressure may have a dominant role in promoting fluid migration for the fluid with weak adsorption capacity.However,for the fluid with strong adsorption capacity,the adsorption strain caused by pore pressure may play a leading role,and the permeability reduces first and then ascends with increasing pore pressure.
文摘The impact of Cr3+ ion on the magnetic properties of Mn0.50Zn0.50CrxFe2-xO4 (with x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) has been studied. Ferrite samples were synthesized by combustion method and sintered at various temperatures (1250°C, 1300°C and 1350°C). The structural properties were investigated by means of X-ray diffraction patterns and indicated that the samples possess single phase cubic spinel structure. The lattice parameter decreases with the increase in Cr3+ content, as the ionic radius of Cr3+ ion is smaller than that of Fe3+. The average grain size (D), bulk density (ρB) and initial permeability (μi’ )decreases with increase in Cr3+ content whereas porosity follows its opposite trend. The ρB was found to increase with increase in Cr3+ content as the sintering temperature (Ts) is increased from 1250°C to 1350°C. The Ts affects the densification, grain growth and (μi’ ) of the samples. The (μi’ ) strongly depends on average grain size, density and intragranular porosity. The B-H loops of the compositions were measured at room temperature. The saturation magnetization (Ms), coercivity (Hc) and hysteresis losses were studied as a function of Cr3+ content. The Ms was found to decrease with the increase of Cr3+ content, which is attributed to the dilution of A-B interaction.
文摘The nanocrystalline structure of annealed Fe73.5 Cu1 W3Si13.5B9 alloy has been investigated by using the XRD and the TEM methods. The relation between the initial permeability and the microstructure of the annealed alloy has been discussed. The crystalline phase in annealed Fe73.5 Cu1 W3Si13.5B9 alloy is the α-Fe(Si) phase with DO3 superstructure. The volume fraction, Si content and degree of order of the αFe(Si) phase increase with increasing annealing temperature. In the temperature range of 490-570℃, the α-Fe(Si) phase has a size of 13 nm, and its grain number increases as the annealing temperature is increased. The DO3 ordered region in the α-Fe(Si) grain is spherical approximately, and its size increases as the annealing temperature increases. The size of the DO3 ordered region is 12.8 nm at the temperature of 570℃,which is close to that of the α-Fe(Si) grain. There is obvious change in the structure of the residual amorphous phase during annealing, and the nearest atomic distance and the short-range order of residual amorphous phase reach maximum and minimum at 530℃, respectively. The initial permeability of annealed Fe73.5 Cu1 W3Si13.5 B9 alloy is not only dependent on the size, volume fraction and Si content of the α-Fe(Si) phase but also related to the structure state of the residual amorphous phase.
基金The Science and Technology Innovation Committee(STIC)of Shenzhen(No.JCYJ20180306174455080)
文摘Due to the fact that rolling contact fatigue is not easily detected, and residual life is not easily evaluated in the early stage of bearing life, a nondestructive testing method based on initial permeability is proposed. By analyzing the crack propagation mechanism, a fatigue state detection system based on differential signals is designed. A simulation model of the detection of the inner ring of the pulse signal is established by using the electromagnetic field simulation software. The effects of the height of the coil, the inner and outer diameter, the number of coil turns, the diameter and the height of the ferrite core of the probe on the differential value of the detection signal are simulated. The parameter combination of the maximum difference value of the signal is used as the structural size of the sensor, and the detection sensor is designed and fabricated. Moreover, the bearing fatigue test system is designed, and the bearing is tested. The results show that the system has good detection ability for rolling contact fatigue and verifies the mechanism and trend of crack propagation in the inner ring of the bearing.
文摘An investigation is reported on the influence of different components of high performance concrete (HPC) on the initial binding capacities (IBC) of chloride ion. The testing results demonstrate that cement has the largest IBC, and the relative binding ratio is as high as 30% of total ion amount. Among the mineral admixtures, fly ash has the largest IBC of chloride ion. The IBC of silica fume is about 14.4%, which is smaller than that of fly ash. The IBC of refined ground blast-furnace slag (microslag) is abnormal due to the influence of sulfate ion contained. The addition of superplasticizer and corrosion inhibitor containing calcium nitrite weakens the IBC of mixtures. The fluidity and pore-filling effect of mineral admixtures are studied with paste samples with WIC ratio of 0.3. The influence mechanism of various components in high-performance concrete in IBC is studied further through SEM and Mercury Instrusion Porosimetry tests with paste samples at the age of 3 days.
文摘The optimum ferrite can be obtained through free-microstructural defects where such defects are always encountered in the conventional ferrites often caused by chemical inhomogeneity. In this study, Ni-Zn ferrite was synthesized and fabricated by means of a sol-gel route. Thermal gravimetric analysis (TGA) was used to study the thermal transforma-tion of the ferrite in air. Parts of the sol-gel powder heated at elevated temperatures were characterized by X-ray dif-fraction (XRD) method and Scanning Electron Microscopy (SEM) to reveal the crystallized single-phase and the struc-ture of the obtained ferrite. Fourier transform infrared spectroscopy (FT-IR) was assisted to investigate the structure. The microstructures of the toroidal cores were obtained at two different sintering temperatures and compared with those obtained via the classic method. In addition to that, the magnetic properties were measured. The initial magnetic permeability was found to increase with the increasing of the frequency as a result of the domain wall motions and the corresponding loss was small. Therefore, a well defined polycrystalline microstructure ferrite via an easier preparation methodology as compared to the classic method is obtained.
文摘CIP (complex initial permeability) spectra of PF (polycrystalline ferrite) are studied both as intrinsic and extrinsic properties. In the former case, main steps of modeling, based on effects coming from polycrystal grain sizes distribution and defects, are described. The obtained relations work well in practice for PF with more or less normal MS (microstructure) and no size effects. Besides, fundamental connection between parameters of CIP and MS is found. Another case--PF with possible size effects (MnZn-ferrites) are studied experimentally for different sizes of cores, unveiling the dependence of phenomena on: dimensions of cross-section, number of turns, width of nonmagnetic gap.