期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Influence of equiatomic Zr/(Ti,Nb)substitution on microstructure and ultra-high strength of(Ti,Zr,Nb)C medium-entropy ceramics at 1900℃ 被引量:1
1
作者 Qingqing YANG Xingang WANG +6 位作者 Weichao BAO Ping WU Xiaofei WANG Xiaojie GUO Cheng ZHANG Guojun ZHANG Danyu JIANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第9期1457-1465,共9页
High-temperature mechanical properties of medium-entropy carbide ceramics have attracted significant attention.Tailoring the microstructure is an effective way to improve these high-temperature mechanical properties,w... High-temperature mechanical properties of medium-entropy carbide ceramics have attracted significant attention.Tailoring the microstructure is an effective way to improve these high-temperature mechanical properties,which can be affected by the evolution of the enthalpy and entropy,as well as by lattice distortion and sluggish diffusion.In this study,the effects of equiatomic Zr/(Ti,Nb)substitution(Zr content of 10-40 at%)on the microstructure and high-temperature strength of(Ti,Zr,Nb)C medium-entropy ceramics were investigated.The grain size of the(Ti,Zr,Nb)C medium-entropy ceramics was refined from 9.4±3.7 to 1.1±0.4μm with an increase in the Zr content from 10.0 to 33.3 at%.A further increase in the Zr content to 40 at%resulted in a slight increase in the grain size.At 1900℃,the(Ti,Zr,Nb)C medium-entropy ceramics with the Zr contents of 33.3 and 40 at%exhibited ultra-high flexural strengths of 875±43 and 843±71 MPa,respectively,which were higher than those of the transition metal carbides previously reported under similar conditions.Furthermore,relatively smooth grain boundaries,which were detected at a test temperature of 1000℃,transformed into curved and serrated boundaries as the temperature increased to 1900℃,which may be considered the primary reason for the improved high-temperature flexural strength.The associated mechanism was analyzed and discussed in detail. 展开更多
关键词 medium entropy mechanical property ultra-high temperature ceramics(UHTCs) nonequimolar compositions curved and serrated grain boundaries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部