This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The defini...This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The definition and the criteria of Mei symmetry, loosely Mei symmetry, strictly Mei symmetry for the system are given in this paper. The existence condition and the expression of Mei conserved quantity are deduced directly by using Mei symmetry. An example is given to illustrate the application of the results.展开更多
It is a difficult problem to study the stability of the rheonomic and nonholonomic mechanical systems. Especially it is difficult to construct the Lyapunov function directly from the differential equation. But the gra...It is a difficult problem to study the stability of the rheonomic and nonholonomic mechanical systems. Especially it is difficult to construct the Lyapunov function directly from the differential equation. But the gradient system is exactly suitable to study the stability of a dynamical system with the aid of the Lyapunov function. The stability of the solution for a simple rheonomic nonholonomic constrained system is studied in this paper. Firstly, the differential equations of motion of the system are established. Secondly, a problem in which the generalized forces are exerted on the system such that the solution is stable is proposed. Finally, the stable solutions of the rheonomic nonholonomic system can be constructed by using the gradient systems.展开更多
The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equ...The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.展开更多
As the dynamic equations of space robots are highly nonlinear,strongly coupled and nonholonomic constrained,the efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simu...As the dynamic equations of space robots are highly nonlinear,strongly coupled and nonholonomic constrained,the efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simulation.This paper combines an efficient spatial operator algebra(SOA) algorithm for base fixed robots with the conservation of linear and angular momentum theory to establish dynamic equations for the free-floating space robot,and analyzes the influence to the base body's position and posture when the manipulator is capturing a target.The recursive Newton-Euler kinematic equations on screw form for the space robot are derived,and the techniques of the sequential filtering and smoothing methods in optimal estimation theory are used to derive an innovation factorization and inverse of the generalized mass matrix which immediately achieve high computational efficiency.The high efficient SOA algorithm is spatially recursive and has a simple math expression and a clear physical understanding,and its computational complexity grows only linearly with the number of degrees of freedom.Finally,a space robot with three degrees of freedom manipulator is simulated in Matematica 6.0.Compared with ADAMS,the simulation reveals that the SOA algorithm is much more efficient to solve the forward and inverse dynamic problems.As a result,the requirements of real-time simulation for dynamics of free-floating space robot are solved and a new analytic modeling system is established for free-floating space robot.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10572021)
文摘This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The definition and the criteria of Mei symmetry, loosely Mei symmetry, strictly Mei symmetry for the system are given in this paper. The existence condition and the expression of Mei conserved quantity are deduced directly by using Mei symmetry. An example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11272050,11202090,11472124,11572034,and 11572145)the Science and Technology Research Project of Liaoning Province,China(Grant No.L2013005)+1 种基金China Postdoctoral Science Foundation(Grant No.2014M560203)the Doctor Start-up Fund in Liaoning Province of China(Grant No.20141050)
文摘It is a difficult problem to study the stability of the rheonomic and nonholonomic mechanical systems. Especially it is difficult to construct the Lyapunov function directly from the differential equation. But the gradient system is exactly suitable to study the stability of a dynamical system with the aid of the Lyapunov function. The stability of the solution for a simple rheonomic nonholonomic constrained system is studied in this paper. Firstly, the differential equations of motion of the system are established. Secondly, a problem in which the generalized forces are exerted on the system such that the solution is stable is proposed. Finally, the stable solutions of the rheonomic nonholonomic system can be constructed by using the gradient systems.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11142014 and 61178032)
文摘The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.
基金supported by National Natural Science Foundation of China (Grant No. 50375071)Commission of Science, Technology and Industry for National Defense Pre-research Foundation of China (Grant No. C4220062501)
文摘As the dynamic equations of space robots are highly nonlinear,strongly coupled and nonholonomic constrained,the efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simulation.This paper combines an efficient spatial operator algebra(SOA) algorithm for base fixed robots with the conservation of linear and angular momentum theory to establish dynamic equations for the free-floating space robot,and analyzes the influence to the base body's position and posture when the manipulator is capturing a target.The recursive Newton-Euler kinematic equations on screw form for the space robot are derived,and the techniques of the sequential filtering and smoothing methods in optimal estimation theory are used to derive an innovation factorization and inverse of the generalized mass matrix which immediately achieve high computational efficiency.The high efficient SOA algorithm is spatially recursive and has a simple math expression and a clear physical understanding,and its computational complexity grows only linearly with the number of degrees of freedom.Finally,a space robot with three degrees of freedom manipulator is simulated in Matematica 6.0.Compared with ADAMS,the simulation reveals that the SOA algorithm is much more efficient to solve the forward and inverse dynamic problems.As a result,the requirements of real-time simulation for dynamics of free-floating space robot are solved and a new analytic modeling system is established for free-floating space robot.