By the generalized variational principle of two kinds of variables in general me-chanics,it was demonstrated that two Lagrangian classical relationships can be applied to both holonomic systems and nonholonomic system...By the generalized variational principle of two kinds of variables in general me-chanics,it was demonstrated that two Lagrangian classical relationships can be applied to both holonomic systems and nonholonomic systems. And the restriction that two Lagrangian classical relationships cannot be applied to nonholonomic systems for a long time was overcome. Then,one important formula of similar La-grangian classical relationship called the popularized Lagrangian classical rela-tionship was derived. From Vakonomic model,by two Lagrangian classical rela-tionships and the popularized Lagrangian classical relationship,the result is the same with Chetaev's model,and thus Chetaev's model and Vakonomic model were unified. Simultaneously,the Lagrangian theoretical framework of dynamics of nonholonomic system was established. By some representative examples,it was validated that the Lagrangian theoretical framework of dynamics of nonholonomic systems is right.展开更多
Lindelf's equation is derived by using the Vakonomic model,which shows that Lindelf's work coincides with Vakonomic model. Chaplygin's equation is derived by using Chetaev's model, which shows that Cha...Lindelf's equation is derived by using the Vakonomic model,which shows that Lindelf's work coincides with Vakonomic model. Chaplygin's equation is derived by using Chetaev's model, which shows that Chaplygin's work coincides with Chetaev's model. On basis of these, by improving the expressions of Chaplygin's equation and Lindelf's equation, the reasonable transition from Chaplygin's equation to Lindelf's equation is realized, the reasonable transition from Lindelf's equation to Chaplygin's equation is realized too. Finally, a typical example is given. The work of this paper shows that, just as the Vakonomic model and Chetaev's model are complementary to each other, Lindelf's work and Chaplygin's work are complementary to each other too.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 10272034)the Research Fund for the Doctoral Program of Higher Education of Chinathe Basic Research Foundation of Harbin Engineering University (Grant No. 20060217020)
文摘By the generalized variational principle of two kinds of variables in general me-chanics,it was demonstrated that two Lagrangian classical relationships can be applied to both holonomic systems and nonholonomic systems. And the restriction that two Lagrangian classical relationships cannot be applied to nonholonomic systems for a long time was overcome. Then,one important formula of similar La-grangian classical relationship called the popularized Lagrangian classical rela-tionship was derived. From Vakonomic model,by two Lagrangian classical rela-tionships and the popularized Lagrangian classical relationship,the result is the same with Chetaev's model,and thus Chetaev's model and Vakonomic model were unified. Simultaneously,the Lagrangian theoretical framework of dynamics of nonholonomic system was established. By some representative examples,it was validated that the Lagrangian theoretical framework of dynamics of nonholonomic systems is right.
文摘Lindelf's equation is derived by using the Vakonomic model,which shows that Lindelf's work coincides with Vakonomic model. Chaplygin's equation is derived by using Chetaev's model, which shows that Chaplygin's work coincides with Chetaev's model. On basis of these, by improving the expressions of Chaplygin's equation and Lindelf's equation, the reasonable transition from Chaplygin's equation to Lindelf's equation is realized, the reasonable transition from Lindelf's equation to Chaplygin's equation is realized too. Finally, a typical example is given. The work of this paper shows that, just as the Vakonomic model and Chetaev's model are complementary to each other, Lindelf's work and Chaplygin's work are complementary to each other too.