This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The defini...This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The definition and the criteria of Mei symmetry, loosely Mei symmetry, strictly Mei symmetry for the system are given in this paper. The existence condition and the expression of Mei conserved quantity are deduced directly by using Mei symmetry. An example is given to illustrate the application of the results.展开更多
This paper studies the new type of conserved quantity which is directly induced by Mei symmetry of nonholonomic systems in terms of quasi-coordinates. A coordination function is introduced, and the conditions for the ...This paper studies the new type of conserved quantity which is directly induced by Mei symmetry of nonholonomic systems in terms of quasi-coordinates. A coordination function is introduced, and the conditions for the existence of the new conserved quantities as well as their forms are proposed. Some special cases are given to illustrate the generalized significance of the new type conserved quantity. Finally, an illustrated example is given to show the application of the nonholonomic system's results.展开更多
Hojman conserved quantities deduced from the special Lie symmetry, the Noether symmetry and the form invariance for a nonholonomic system of the unilateral non-Chetacv type in the event space are investigated. The dif...Hojman conserved quantities deduced from the special Lie symmetry, the Noether symmetry and the form invariance for a nonholonomic system of the unilateral non-Chetacv type in the event space are investigated. The differential equations of motion of the system above are established. The criteria of the Lie symmetry, the Noether symmetry and the form invariance are given and the relations between them are obtained. The Hojman conserved quantities are gained by which the Hojman theorem is extended and applied to the nonholonomic system of the unilateral non-Chetacv type in the event space. An example is given to illustrate the application of the results.展开更多
This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are es...This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are established. The definition of the Lie symmetrical transformations of the systems is given, which only depends upon the infinitesimal transformations of groups for the generalized coordinates. The conserved quantity is directly constructed in terms of the Lie symmetry of the systems. The condition under which the Lie symmetry can lead to the conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.展开更多
This paper concentrates on studying the symmetries and a new type of conserved quantities called Mei conserved quantities for Nonholonomic Systems with Servoconstraints. The criterions of the Mei symmetry, the Noether...This paper concentrates on studying the symmetries and a new type of conserved quantities called Mei conserved quantities for Nonholonomic Systems with Servoconstraints. The criterions of the Mei symmetry, the Noether symmetry, and the Lie symmetry are given. The conditions and the forms of the Mei conserved quantities deduced from these three symmetries are obtained. An example is given to illustrate the appfication of the results.展开更多
The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equ...The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.展开更多
In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the sys...In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the system are given. The necessary and sufficient condition under which the Mei symmetry is a Lie symmetry for the system is obtained. A Lutzky conserved quantity deduced from the Mei symmetry is gotten. An example is given to illustrate the application of our results.展开更多
Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Suf...Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given. Hojman conserved quantity of Tzenoff equations for the systems through Lie symmetry in the condition of special Mei symmetry is obtained.展开更多
We obtain a new type of conserved quantity of Mei symmetry for the motion of mechanico--electrical coupling dynamical systems under the infinitesimal transformations. A criterion of Mei symmetry for the mechanico-elec...We obtain a new type of conserved quantity of Mei symmetry for the motion of mechanico--electrical coupling dynamical systems under the infinitesimal transformations. A criterion of Mei symmetry for the mechanico-electrical coupling dynamical systems is given. Simultaneously, the condition of existence of the new conserved quantity of Mei symmetry for mechanico-electrical coupling dynamical systems is obtained. Finally, an example is given to illustrate the application of the results.展开更多
This paper studies the Hojman conserved quantity, a non-Noether conserved quantity, deduced by special weak Noether symmetry for Lagrange systems. Under special infinitesimal transformations in which the time is not v...This paper studies the Hojman conserved quantity, a non-Noether conserved quantity, deduced by special weak Noether symmetry for Lagrange systems. Under special infinitesimal transformations in which the time is not variable, its criterion is given and a method of how to seek the Hojman conserved quantity is presented. A Hojman conserved quantity can be found by using the special weak Noether symmetry.展开更多
We study the approximate conserved quantity of the weakly nonholonomic mechanical-electrical system. By means of the Lagrange-Maxwell equation, the Noether equality of the weakly nonholonomic mechanical-electrical sys...We study the approximate conserved quantity of the weakly nonholonomic mechanical-electrical system. By means of the Lagrange-Maxwell equation, the Noether equality of the weakly nonholonomic mechanical-electrical system is obtained. The multiple powers-series expansion of the parameter of the generators of infinitesimal transformations and the gauge function is put into a generalized Noether identity. Using the Noether theorem, we obtain an approximate conserved quantity. An example is provided to prove the existence of the approximate conserved quantity.展开更多
The form invariance and the conserved quantity for a weakly nonholonomic system (WNS) are studied. The WNS is a nonholonomic system (NS) whose constraint equations contain a small parameter. The differential equat...The form invariance and the conserved quantity for a weakly nonholonomic system (WNS) are studied. The WNS is a nonholonomic system (NS) whose constraint equations contain a small parameter. The differential equations of motion of the system are established. The definition and the criterion of form invariance of the system are given. The conserved quantity deduced from the form invariance is obtained. Finally, an illustrative example is shown.展开更多
The Lie symmetry theorem of fractional nonholonomic systems in terms of combined fractional derivatives is estab- lished, and the fractional Lagrange equations are obtained by virtue of the d'Alembert-Lagrange princi...The Lie symmetry theorem of fractional nonholonomic systems in terms of combined fractional derivatives is estab- lished, and the fractional Lagrange equations are obtained by virtue of the d'Alembert-Lagrange principle with fractional derivatives. As the Lie symmetry theorem is based on the invariance of differential equations under infinitesimal trans- formations, by introducing the differential operator of infinitesimal generators, the determining equations are obtained. Furthermore, the limit equations, the additional restriction equations, the structural equations, and the conserved quantity of Lie symmetry are acquired. An example is presented to illustrate the application of results.展开更多
In the paper [J. of Beijing Institute of Technology 26 (2006) 285] the authors provided the definition of weakly Noether symmetry. We now discuss the weakly Noether symmetry for non-holonomic system of Chetaev's ty...In the paper [J. of Beijing Institute of Technology 26 (2006) 285] the authors provided the definition of weakly Noether symmetry. We now discuss the weakly Noether symmetry for non-holonomic system of Chetaev's type, and present expressions of three kinds of conserved quantities by weakly Noether symmetry. Finally, the application of this new result is shown by a practical example.展开更多
This paper studies a new type of conserved quantity which is directly induced by Lie symmetry of the Lagrange system. Firstly, the criterion of Lie symmetry for the Lagrange system is given. Secondly, the conditions o...This paper studies a new type of conserved quantity which is directly induced by Lie symmetry of the Lagrange system. Firstly, the criterion of Lie symmetry for the Lagrange system is given. Secondly, the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an example is given to illustrate the application of the result.展开更多
This paper studies a new type of conserved quantity which is directly induced by Mei symmetry of the Lagrange system. Firstly, the definition and criterion of Mei symmetry for the Lagrange system are given. Secondly, ...This paper studies a new type of conserved quantity which is directly induced by Mei symmetry of the Lagrange system. Firstly, the definition and criterion of Mei symmetry for the Lagrange system are given. Secondly, a coordination function is introduced, and the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an illustrated example is given. The result indicates that the coordination function can be selected properly according to the demand for finding the gauge function, and thereby the gauge function can be found more easily. Furthermore, since the choice of the coordination function has multiformity, many more conserved quantities of Mei symmetry for the Lagrange system can be obtained.展开更多
A non-Noether conserved quantity for the Hamiltonian system is studied. A particular infinitesimal transformation is given and the determining equations of Lie symmetry are established. An existence theorem of the non...A non-Noether conserved quantity for the Hamiltonian system is studied. A particular infinitesimal transformation is given and the determining equations of Lie symmetry are established. An existence theorem of the non-Noether conserved quantity is obtained. An example is given to illustrate the application of the result.展开更多
A form invariance of the relativistic Birkhoffian system is studied, and the conserved quantities of the system are obtained. Under the infinitesimal transformation of groups, the definition and criteria of the form i...A form invariance of the relativistic Birkhoffian system is studied, and the conserved quantities of the system are obtained. Under the infinitesimal transformation of groups, the definition and criteria of the form invariance of the system were given. In view of the invariance of relativistic Pfaff_Birkhoff_ D'Alembert principle under the infinitesimal transformation of groups, the theory of Noether symmetries of the relativistic Birkhoffian system were constructed. The relation between the form invariance and the Noether symmetry is studied, and the results show that the form invariance can also lead to the Noether symmetrical conserved quantity of the relativistic Birkhoffian system under certain conditions.展开更多
Based on the weak Noether symmetry proposed by Mei F X, this paper discusses the weak Noether symmetry for nonholonomic system of non-Chetaev type, and presents expressions of three kinds of conserved quantities by we...Based on the weak Noether symmetry proposed by Mei F X, this paper discusses the weak Noether symmetry for nonholonomic system of non-Chetaev type, and presents expressions of three kinds of conserved quantities by weak Noether symmetry. Finally, the application of this new results is showed by a practical example.展开更多
This paper studies the Lie symmetry and Hojman conserved quantity of the Nambu system. The determining equations of Lie symmetry for the system are given. The conditions for existence and the form of the Hojman conser...This paper studies the Lie symmetry and Hojman conserved quantity of the Nambu system. The determining equations of Lie symmetry for the system are given. The conditions for existence and the form of the Hojman conserved quantity led by the Lie symmetry for the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10572021)
文摘This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The definition and the criteria of Mei symmetry, loosely Mei symmetry, strictly Mei symmetry for the system are given in this paper. The existence condition and the expression of Mei conserved quantity are deduced directly by using Mei symmetry. An example is given to illustrate the application of the results.
文摘This paper studies the new type of conserved quantity which is directly induced by Mei symmetry of nonholonomic systems in terms of quasi-coordinates. A coordination function is introduced, and the conditions for the existence of the new conserved quantities as well as their forms are proposed. Some special cases are given to illustrate the generalized significance of the new type conserved quantity. Finally, an illustrated example is given to show the application of the nonholonomic system's results.
基金Project supported by the National Natural Science Foundation of China (Grant No 10572021).
文摘Hojman conserved quantities deduced from the special Lie symmetry, the Noether symmetry and the form invariance for a nonholonomic system of the unilateral non-Chetacv type in the event space are investigated. The differential equations of motion of the system above are established. The criteria of the Lie symmetry, the Noether symmetry and the form invariance are given and the relations between them are obtained. The Hojman conserved quantities are gained by which the Hojman theorem is extended and applied to the nonholonomic system of the unilateral non-Chetacv type in the event space. An example is given to illustrate the application of the results.
文摘This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are established. The definition of the Lie symmetrical transformations of the systems is given, which only depends upon the infinitesimal transformations of groups for the generalized coordinates. The conserved quantity is directly constructed in terms of the Lie symmetry of the systems. The condition under which the Lie symmetry can lead to the conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.
基金supported by the Key Disciplines' Building Foundation of Henan Institute of Education
文摘This paper concentrates on studying the symmetries and a new type of conserved quantities called Mei conserved quantities for Nonholonomic Systems with Servoconstraints. The criterions of the Mei symmetry, the Noether symmetry, and the Lie symmetry are given. The conditions and the forms of the Mei conserved quantities deduced from these three symmetries are obtained. An example is given to illustrate the appfication of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11142014 and 61178032)
文摘The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.
文摘In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the system are given. The necessary and sufficient condition under which the Mei symmetry is a Lie symmetry for the system is obtained. A Lutzky conserved quantity deduced from the Mei symmetry is gotten. An example is given to illustrate the application of our results.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10672143 and 10572021
文摘Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given. Hojman conserved quantity of Tzenoff equations for the systems through Lie symmetry in the condition of special Mei symmetry is obtained.
基金supported by the National Natural Science Foundation of China (Grant No.11072218)
文摘We obtain a new type of conserved quantity of Mei symmetry for the motion of mechanico--electrical coupling dynamical systems under the infinitesimal transformations. A criterion of Mei symmetry for the mechanico-electrical coupling dynamical systems is given. Simultaneously, the condition of existence of the new conserved quantity of Mei symmetry for mechanico-electrical coupling dynamical systems is obtained. Finally, an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022)
文摘This paper studies the Hojman conserved quantity, a non-Noether conserved quantity, deduced by special weak Noether symmetry for Lagrange systems. Under special infinitesimal transformations in which the time is not variable, its criterion is given and a method of how to seek the Hojman conserved quantity is presented. A Hojman conserved quantity can be found by using the special weak Noether symmetry.
文摘We study the approximate conserved quantity of the weakly nonholonomic mechanical-electrical system. By means of the Lagrange-Maxwell equation, the Noether equality of the weakly nonholonomic mechanical-electrical system is obtained. The multiple powers-series expansion of the parameter of the generators of infinitesimal transformations and the gauge function is put into a generalized Noether identity. Using the Noether theorem, we obtain an approximate conserved quantity. An example is provided to prove the existence of the approximate conserved quantity.
基金supported by the National Natural Science Foundation of China(Nos.10932002,10972031,and 11272050)
文摘The form invariance and the conserved quantity for a weakly nonholonomic system (WNS) are studied. The WNS is a nonholonomic system (NS) whose constraint equations contain a small parameter. The differential equations of motion of the system are established. The definition and the criterion of form invariance of the system are given. The conserved quantity deduced from the form invariance is obtained. Finally, an illustrative example is shown.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272287 and 11472247)the Program for Changjiang Scholars and Innovative Research Team in University of China(Grant No.IRT13097)
文摘The Lie symmetry theorem of fractional nonholonomic systems in terms of combined fractional derivatives is estab- lished, and the fractional Lagrange equations are obtained by virtue of the d'Alembert-Lagrange principle with fractional derivatives. As the Lie symmetry theorem is based on the invariance of differential equations under infinitesimal trans- formations, by introducing the differential operator of infinitesimal generators, the determining equations are obtained. Furthermore, the limit equations, the additional restriction equations, the structural equations, and the conserved quantity of Lie symmetry are acquired. An example is presented to illustrate the application of results.
基金National Natural Science Foundation of China under Grant Nos.10572021 and 10772025the Doctoral Program Foundation of the Institution of Higher Education of China under Grant No.20040007022
文摘In the paper [J. of Beijing Institute of Technology 26 (2006) 285] the authors provided the definition of weakly Noether symmetry. We now discuss the weakly Noether symmetry for non-holonomic system of Chetaev's type, and present expressions of three kinds of conserved quantities by weakly Noether symmetry. Finally, the application of this new result is shown by a practical example.
文摘This paper studies a new type of conserved quantity which is directly induced by Lie symmetry of the Lagrange system. Firstly, the criterion of Lie symmetry for the Lagrange system is given. Secondly, the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an example is given to illustrate the application of the result.
文摘This paper studies a new type of conserved quantity which is directly induced by Mei symmetry of the Lagrange system. Firstly, the definition and criterion of Mei symmetry for the Lagrange system are given. Secondly, a coordination function is introduced, and the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an illustrated example is given. The result indicates that the coordination function can be selected properly according to the demand for finding the gauge function, and thereby the gauge function can be found more easily. Furthermore, since the choice of the coordination function has multiformity, many more conserved quantities of Mei symmetry for the Lagrange system can be obtained.
文摘A non-Noether conserved quantity for the Hamiltonian system is studied. A particular infinitesimal transformation is given and the determining equations of Lie symmetry are established. An existence theorem of the non-Noether conserved quantity is obtained. An example is given to illustrate the application of the result.
文摘A form invariance of the relativistic Birkhoffian system is studied, and the conserved quantities of the system are obtained. Under the infinitesimal transformation of groups, the definition and criteria of the form invariance of the system were given. In view of the invariance of relativistic Pfaff_Birkhoff_ D'Alembert principle under the infinitesimal transformation of groups, the theory of Noether symmetries of the relativistic Birkhoffian system were constructed. The relation between the form invariance and the Noether symmetry is studied, and the results show that the form invariance can also lead to the Noether symmetrical conserved quantity of the relativistic Birkhoffian system under certain conditions.
基金supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)the Doctoral Programme Foundation of Institute of Higher Education of China (Grant No 20040007022)
文摘Based on the weak Noether symmetry proposed by Mei F X, this paper discusses the weak Noether symmetry for nonholonomic system of non-Chetaev type, and presents expressions of three kinds of conserved quantities by weak Noether symmetry. Finally, the application of this new results is showed by a practical example.
文摘This paper studies the Lie symmetry and Hojman conserved quantity of the Nambu system. The determining equations of Lie symmetry for the system are given. The conditions for existence and the form of the Hojman conserved quantity led by the Lie symmetry for the system are obtained. Finally, an example is given to illustrate the application of the results.