Good compatibility between waterborne epoxy resin(WER)modifier and styrene-butadiene rubber(SBR)latex modified asphalt emulsion(SBRE)is an essential premise for good pavement performance of WER and SBR latex composite...Good compatibility between waterborne epoxy resin(WER)modifier and styrene-butadiene rubber(SBR)latex modified asphalt emulsion(SBRE)is an essential premise for good pavement performance of WER and SBR latex compositely modified asphalt emulsion(WSAE).This study aims to explore the compatibility between WER modifier and SBRE.To achieve the goal,several WER modifiers produced by two methods were first selected to modify SBRE,thus the WSAEs were prepared.Next,storage stability and workability of the WSAEs themselves,and high-temperature performance,rheological behavior and temperature sensitivity of their evaporated residues were compared and evaluated via performing a series of experiments,respectively,thus the WER modifier possessing an optimal modification effect was recommended.Results show that the storage stability of WSAEs is sensitive to the amount of WERs.The incorporation of 1%WERs by the mass of SBRE improves the storage stability of SBRE,while WERs that exceed 1%weaken its storage stability.When the WERs reach 3%and 4%,the 5 d storage stability of prepared WSAEs will be beyond the limitation of specification.Incorporating WERs into SBRE negatively affects the workability of SBRE,and the workability of WSAEs is adversely influenced by the WERs content and the storage time.To ensure the construction,the WSAEs with 3%and 4%WERs should not be stored for more than 36 h and 48 h,respectively.The WERs effectively improve the high-temperature performance of SBRE residue,especially the 3%WERs.Besides,the WERs notably enhance the rheological property and thermal stability of SBRE residue.In contrast,the WER modifier produced by chemically modified method has a smaller adverse impact on the storage stability and workability of WSAE,and a larger enhancement on the high-temperature performance,rheological property and thermal stability of SBRE residue,which is thus recommended to modify SBRE.展开更多
A stable epoxy emulsion was prepared with epoxy resin (EP) as raw material, 2-acrylamido-2- methyl-l-propanesulfonic acid (AMPS) as modifier and benzoyl peroxide as initiator. By criterion of yield of the copolyme...A stable epoxy emulsion was prepared with epoxy resin (EP) as raw material, 2-acrylamido-2- methyl-l-propanesulfonic acid (AMPS) as modifier and benzoyl peroxide as initiator. By criterion of yield of the copolymer AMPS-EP, water-solubility, change of the acid value and intrinsic viscosity [η] along with reaction time, the copolymerization course was deduced. It is found that during the process, AMPS takes part in both the grafting copolymerization with epoxy principal chain and the ring-opening polyaddition with epoxy group. It is also discovered that the yield of AMPS-EP and water dispersing varies with reaction time. When it reaches 1.5 h, AMPS-EP can obtain good water-solubility; but the water-solubility will go bad gradually if it exceeds 3.5 h.. R spectrum analysis indicates that partial epoxy group partially remains and the others create sulfonic ester.展开更多
The effects of emulsifier molecular architecture on phase inversion process including the critical water content at phase inversion point as well as the particle size are investigated. It is found that the water conte...The effects of emulsifier molecular architecture on phase inversion process including the critical water content at phase inversion point as well as the particle size are investigated. It is found that the water content at phase inversion point reaches a maximum when the molar ratio of the hydrophilic component PEG10000 to the hydrophobic component bisphenol A epoxy resin E20 is equal to 1∶1, meanwhile, the particle size reaches a minimum (about 100 nm). From the experimental results, it can be seen that to alter the molecular architecture of the emulsifier is an effective method to control the size of the waterborne particles prepared by phase inversion emulsification technique.展开更多
基金funded by the National Natural Science Foundation of China(NSFC)under Grant No.211021180360the Transportation Science and Technology in Shaanxi Province under Grant No.KY17-02.
文摘Good compatibility between waterborne epoxy resin(WER)modifier and styrene-butadiene rubber(SBR)latex modified asphalt emulsion(SBRE)is an essential premise for good pavement performance of WER and SBR latex compositely modified asphalt emulsion(WSAE).This study aims to explore the compatibility between WER modifier and SBRE.To achieve the goal,several WER modifiers produced by two methods were first selected to modify SBRE,thus the WSAEs were prepared.Next,storage stability and workability of the WSAEs themselves,and high-temperature performance,rheological behavior and temperature sensitivity of their evaporated residues were compared and evaluated via performing a series of experiments,respectively,thus the WER modifier possessing an optimal modification effect was recommended.Results show that the storage stability of WSAEs is sensitive to the amount of WERs.The incorporation of 1%WERs by the mass of SBRE improves the storage stability of SBRE,while WERs that exceed 1%weaken its storage stability.When the WERs reach 3%and 4%,the 5 d storage stability of prepared WSAEs will be beyond the limitation of specification.Incorporating WERs into SBRE negatively affects the workability of SBRE,and the workability of WSAEs is adversely influenced by the WERs content and the storage time.To ensure the construction,the WSAEs with 3%and 4%WERs should not be stored for more than 36 h and 48 h,respectively.The WERs effectively improve the high-temperature performance of SBRE residue,especially the 3%WERs.Besides,the WERs notably enhance the rheological property and thermal stability of SBRE residue.In contrast,the WER modifier produced by chemically modified method has a smaller adverse impact on the storage stability and workability of WSAE,and a larger enhancement on the high-temperature performance,rheological property and thermal stability of SBRE residue,which is thus recommended to modify SBRE.
文摘A stable epoxy emulsion was prepared with epoxy resin (EP) as raw material, 2-acrylamido-2- methyl-l-propanesulfonic acid (AMPS) as modifier and benzoyl peroxide as initiator. By criterion of yield of the copolymer AMPS-EP, water-solubility, change of the acid value and intrinsic viscosity [η] along with reaction time, the copolymerization course was deduced. It is found that during the process, AMPS takes part in both the grafting copolymerization with epoxy principal chain and the ring-opening polyaddition with epoxy group. It is also discovered that the yield of AMPS-EP and water dispersing varies with reaction time. When it reaches 1.5 h, AMPS-EP can obtain good water-solubility; but the water-solubility will go bad gradually if it exceeds 3.5 h.. R spectrum analysis indicates that partial epoxy group partially remains and the others create sulfonic ester.
文摘The effects of emulsifier molecular architecture on phase inversion process including the critical water content at phase inversion point as well as the particle size are investigated. It is found that the water content at phase inversion point reaches a maximum when the molar ratio of the hydrophilic component PEG10000 to the hydrophobic component bisphenol A epoxy resin E20 is equal to 1∶1, meanwhile, the particle size reaches a minimum (about 100 nm). From the experimental results, it can be seen that to alter the molecular architecture of the emulsifier is an effective method to control the size of the waterborne particles prepared by phase inversion emulsification technique.