For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
This paper aims to propose an improved numerical model for wave breaking in the nearshore region based on the fully nonlinear form of Boussinesq equations. The model uses the κ equation turbulence scheme to determine...This paper aims to propose an improved numerical model for wave breaking in the nearshore region based on the fully nonlinear form of Boussinesq equations. The model uses the κ equation turbulence scheme to determine the eddy viscosity in the Boussinesq equations. To calculate the turbulence production term in the equation, a new formula is derived based on the concept of surface roller. By use of this formula, the turbulence production in the one-equation turbulence scheme is directly related to the difference between the water particle velocity and the wave celerity. The model is verified by Hansen and Svendsen's experimental data (1979) in terms of wave height and setup and setdown. The comparison between the model and experimental results of wave height and setup and setdown shows satisfactory agreement. The modeled turbulence energy decreases as waves attenuate in the surf zone. The modeled production term peaks at the breaking point and decreases as waves propagate shoreward. It is also suggested that both convection and diffusion play their important roles in the transport of turbulence energy immediately after wave breaking. When waves approach to the shoreline, the production and dissipation of turbulence energy are almost balanced. By use of the slot technique for the simulation of the movable shoreline boundary, wave runup in the swash zone is well simulated by the present model.展开更多
Based on the high order nonlinear and dispersive wave equation with a dissipative term, a numerical model for nonlinear waves is developed, It is suitable to calculate wave propagation in water areas with an arbitrari...Based on the high order nonlinear and dispersive wave equation with a dissipative term, a numerical model for nonlinear waves is developed, It is suitable to calculate wave propagation in water areas with an arbitrarily varying bottom slope and a relative depth h/L(0)less than or equal to1. By the application of the completely implicit stagger grid and central difference algorithm, discrete governing equations are obtained. Although the central difference algorithm of second-order accuracy both in time and space domains is used to yield the difference equations, the order of truncation error in the difference equation is the same as that of the third-order derivatives of the Boussinesq equation. In this paper, the correction to the first-order derivative is made, and the accuracy of the difference equation is improved. The verifications of accuracy show that the results of the numerical model are in good agreement with those of analytical Solutions and physical models.展开更多
In this paper we are going to derive two numerical methods for solving the coupled nonlinear Schrodinger-Boussinesq equation. The first method is a nonlinear implicit scheme of second order accuracy in both directions...In this paper we are going to derive two numerical methods for solving the coupled nonlinear Schrodinger-Boussinesq equation. The first method is a nonlinear implicit scheme of second order accuracy in both directions time and space;the scheme is unconditionally stable. The second scheme is a nonlinear implicit scheme of second order accuracy in time and fourth order accuracy in space direction. A generalized method is also derived where the previous schemes can be obtained by some special values of l. The proposed methods will produced a coupled nonlinear tridiagonal system which can be solved by fixed point method. The exact solutions and the conserved quantities for two different tests are used to display the robustness of the proposed schemes.展开更多
The symmetries and the exact solutions of the (3+l)-dimensional nonlinear incompressible non-hydrostatic Boussi- nesq (INHB) equations, which describe atmospheric gravity waves, are studied in this paper. The cal...The symmetries and the exact solutions of the (3+l)-dimensional nonlinear incompressible non-hydrostatic Boussi- nesq (INHB) equations, which describe atmospheric gravity waves, are studied in this paper. The calculation on symmetry shows that the equations are invariant under the Galilean transformations, the scaling transformations, and the space-time translations. Three types of symmetry reduction equations and similar solutions for the (3+ 1)-dimensional INHB equations are proposed. Traveling and non-traveling wave solutions of the INHB equations are demonstrated. The evolutions of the wind velocities in latitudinal, longitudinal, and vertical directions with space-time are demonstrated. The periodicity and the atmosphere viscosity are displayed in the (3+1)-dimensional INHB system.展开更多
By the complete discrimination system for polynomial method, we obtained the classification of single traveling wave solutions to the generalized strong nonlinear Boussinesq equation without dissipation terms in p=1.
An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete alg...An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete algebraic equations are established and are solved by an iterative algorithm. Convergence of the iterative algorithm is discussed. Shifted and scaled basis functions are incorporated into the method to guarantee convergence and stability of numerical results. Numerical examples are presented to demonstrate the high convergence rate and high computational accuracy of the method.展开更多
For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Bo...For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Boussinesq-type equations has been a practical problem for engineers. In this paper, approaches of improving the characteristics of the equations, i.e. linear dispersion, shoaling gradient and nonlinearity, are reviewed and the advantages and disadvantages of several different Boussinesq-type equations are compared for the applications of these Boussinesq-type equations in coastal engineering with relatively large sea areas. Then for improving the properties of Boussinesq-type equations, a new set of fully nonlinear Boussinseq-type equations with modified representative velocity are derived, which can be used for better linear dispersion and nonlinearity. Based on the method of minimizing the overall error in different ranges of applications, sets of parameters are determined with optimized linear dispersion, linear shoaling and nonlinearity, respectively. Finally, a test example is given for validating the results of this study. Both results show that the equations with optimized parameters display better characteristics than the ones obtained by matching with pad6 approximation.展开更多
The multi-symplectic formulations of the 'Good' Boussinesq equation were considered. For the multi-symplectic formulation, a new fifteen-point difference scheme which is equivalent to the multi-symplectic Prei...The multi-symplectic formulations of the 'Good' Boussinesq equation were considered. For the multi-symplectic formulation, a new fifteen-point difference scheme which is equivalent to the multi-symplectic Preissman integrator was derived. The numerical experiments show that, the multi- symplectic scheme have excellent long-time numerical. behavior.展开更多
In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the B...In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.展开更多
Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq eq...Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq equations derived by Zou (1999) and the other is the classic Boussinesq equations, Physical experiments are conducted, three different front slopes (1:10, 1:5 and 1:2) of the shelf are set up in the experiment and their effects on wave propagation are investigated. Comparisons of numerical results with test data are made, the model of higher-order Boussinesq equations agrees much better with the measurements than the model of the classical Boussinesq equations, The results show that the higher-order Boussinesq equations can also be applied to the steeper slope case although the mild slope assumption is employed in the derivation of the higher order terms of higher order Boussinesq equations.展开更多
Both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou are extended to reduce the high-order modified Boussinesq equation with the damping term (HMBEDT) arising in the general Fer...Both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou are extended to reduce the high-order modified Boussinesq equation with the damping term (HMBEDT) arising in the general Fermi-Pasta-Ulam model. As a result, several types of similarity reductions are obtained. It is easy to show that the nonlinear wave equation is not integrable under the sense of AblowRz's conjecture from the reduction results obtained. In addition, kink-shaped solitary wave solutions, which are of important physical significance, are found for HMBEDT based on the obtained reduction equation.展开更多
Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are ...Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.展开更多
An edge wave numerical model was developed based on extended Boussinesq equations with the internal wave-generation method. The form of edge waves near a seawall was chosen as the input signal in order to avoid treatm...An edge wave numerical model was developed based on extended Boussinesq equations with the internal wave-generation method. The form of edge waves near a seawall was chosen as the input signal in order to avoid treatment of the moving shoreline on a sloping beach. As there was an energy transfer between different edge wave modes, not only the target mode but also other modes appeared in the simulations. Due to the nonlinear effect, the simulation results for mode-0 edge waves were slightly modulated by mode-1 and mode-2 waves. As the magnitudes of these higher-mode waves are not significantly related to those of the target mode, the internal wave-generation method in Boussinesq equations can produce high-quality edge waves. The numerical model was used to investigate the nonlinear properties of standing edge waves, and the numerical results were in strong agreement with theory.展开更多
A new approach to high-order Boussinesq-type equations with ambient currents is presented. The current velocity is assumed to be uniform over depth and of the same magnitude as the shallow water wave celerity. The wav...A new approach to high-order Boussinesq-type equations with ambient currents is presented. The current velocity is assumed to be uniform over depth and of the same magnitude as the shallow water wave celerity. The wave velocity field is expressed in terms of the horizontal and vertical wave velocity components at an arbitrary water depth level. Linear operators are introduced to improve the accuracy of the kinematic condition at the sea bottom. The dynamic and kinematic conditions at the free surface are expressed in terms of wave velocity variables defined directly on the free surface. The new equations provide high accuracy of linear properties as well as nonlinear properties from shallow to deep water, and extend the applicable range of relative water depth in the case of opposing currents.展开更多
Trial equation method is a powerful tool for obtaining exact solutions of nonlinear differential equations. In this paper, the improved Boussinesq is reduced to an ordinary differential equation under the travelling w...Trial equation method is a powerful tool for obtaining exact solutions of nonlinear differential equations. In this paper, the improved Boussinesq is reduced to an ordinary differential equation under the travelling wave transformation. Trial equation method and the theory of complete discrimination system for polynomial are used to establish exact solutions of the improved Boussinesq equation.展开更多
Interracial waves propagating along the interface between a three-dimensional two-fluid system with a rigid upper boundary and an uneven bottom are considered. There is a light fluid layer overlying a heavier one in t...Interracial waves propagating along the interface between a three-dimensional two-fluid system with a rigid upper boundary and an uneven bottom are considered. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. A set of higher-order Boussinesq-type equations in terms of the depth-averaged velocities accounting for stronger nonlinearity are derived. When the small parameter measuring frequency dispersion keeping up to lower-order and full nonlinearity are considered, the equations include the Choi and Camassa's results (1999). The enhanced equations in terms of the depth-averaged velocities are obtained by applying the enhancement technique introduced by Madsen et al. (1991) and Schaffer and Madsen (1995a). It is noted that the equations derived from the present study include, as special cases, those obtained by Madsen and Schaffer (1998). By comparison with the dispersion relation of the linear Stokes waves, we found that the dispersion relation is more improved than Choi and Camassa's (1999) results, and the applicable scope of water depth is deeper.展开更多
Boussinesq-type equations and mild-slope equations are compared in terms of their basic forms and characteristics. It is concluded that linear mild-slope equations on dispersion relation are better than non-linear Bou...Boussinesq-type equations and mild-slope equations are compared in terms of their basic forms and characteristics. It is concluded that linear mild-slope equations on dispersion relation are better than non-linear Boussinesq equations. In addition, Berkhoffexperiments are computed and compared by the two models, and agreement between model results and available experimental data is found to be quite reasonable, which demonstrates the two models' capacity to simulate wave transformation. However they can deal with different physical processes respectively, and they have their own characteristics.展开更多
The (G'/G)-expansion method is simple and powerful mathematical tool for constructing traveling wave solutions of nonlinear evolution equations which arise in engineering sciences, mathematical physics and real ti...The (G'/G)-expansion method is simple and powerful mathematical tool for constructing traveling wave solutions of nonlinear evolution equations which arise in engineering sciences, mathematical physics and real time application fields. In this article, we have obtained exact traveling wave solutions of the nonlinear partial differential equation, namely, the fourth order Boussinesq equation involving parameters via the (G'/G)-expansion method. In this method, the general solution of the second order linear ordinary differential equation with constant coefficients is implemented. Further, the solitons and periodic solutions are described through three different families. In addition, some of obtained solutions are described in the figures with the aid of commercial software Maple.展开更多
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
基金This study was supported by the National Natural Science Foundation of China (Grant No.50479047) and partly by the National Science Fund for Distinguished Young Scholars of China (Estuarine and Coastal Science, Grant No.40225014)
文摘This paper aims to propose an improved numerical model for wave breaking in the nearshore region based on the fully nonlinear form of Boussinesq equations. The model uses the κ equation turbulence scheme to determine the eddy viscosity in the Boussinesq equations. To calculate the turbulence production term in the equation, a new formula is derived based on the concept of surface roller. By use of this formula, the turbulence production in the one-equation turbulence scheme is directly related to the difference between the water particle velocity and the wave celerity. The model is verified by Hansen and Svendsen's experimental data (1979) in terms of wave height and setup and setdown. The comparison between the model and experimental results of wave height and setup and setdown shows satisfactory agreement. The modeled turbulence energy decreases as waves attenuate in the surf zone. The modeled production term peaks at the breaking point and decreases as waves propagate shoreward. It is also suggested that both convection and diffusion play their important roles in the transport of turbulence energy immediately after wave breaking. When waves approach to the shoreline, the production and dissipation of turbulence energy are almost balanced. By use of the slot technique for the simulation of the movable shoreline boundary, wave runup in the swash zone is well simulated by the present model.
基金This research was financially supported by China National Key Basic Research Project "Circulation Principal and Mathematic Model" (Grant No. 1999043810) Guangdong Science and Technology Innovation Project: "Disaster Diagnoses of Sea Walls" (99B07102G)
文摘Based on the high order nonlinear and dispersive wave equation with a dissipative term, a numerical model for nonlinear waves is developed, It is suitable to calculate wave propagation in water areas with an arbitrarily varying bottom slope and a relative depth h/L(0)less than or equal to1. By the application of the completely implicit stagger grid and central difference algorithm, discrete governing equations are obtained. Although the central difference algorithm of second-order accuracy both in time and space domains is used to yield the difference equations, the order of truncation error in the difference equation is the same as that of the third-order derivatives of the Boussinesq equation. In this paper, the correction to the first-order derivative is made, and the accuracy of the difference equation is improved. The verifications of accuracy show that the results of the numerical model are in good agreement with those of analytical Solutions and physical models.
文摘In this paper we are going to derive two numerical methods for solving the coupled nonlinear Schrodinger-Boussinesq equation. The first method is a nonlinear implicit scheme of second order accuracy in both directions time and space;the scheme is unconditionally stable. The second scheme is a nonlinear implicit scheme of second order accuracy in time and fourth order accuracy in space direction. A generalized method is also derived where the previous schemes can be obtained by some special values of l. The proposed methods will produced a coupled nonlinear tridiagonal system which can be solved by fixed point method. The exact solutions and the conserved quantities for two different tests are used to display the robustness of the proposed schemes.
基金Project supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 10452840301004616 and S2011040000403)the National Natural Science Foundation of China (Grant No. 41176005)the Science and Technology Project Foundation of Zhongshan, China (Grnat No. 20123A326)
文摘The symmetries and the exact solutions of the (3+l)-dimensional nonlinear incompressible non-hydrostatic Boussi- nesq (INHB) equations, which describe atmospheric gravity waves, are studied in this paper. The calculation on symmetry shows that the equations are invariant under the Galilean transformations, the scaling transformations, and the space-time translations. Three types of symmetry reduction equations and similar solutions for the (3+ 1)-dimensional INHB equations are proposed. Traveling and non-traveling wave solutions of the INHB equations are demonstrated. The evolutions of the wind velocities in latitudinal, longitudinal, and vertical directions with space-time are demonstrated. The periodicity and the atmosphere viscosity are displayed in the (3+1)-dimensional INHB system.
文摘By the complete discrimination system for polynomial method, we obtained the classification of single traveling wave solutions to the generalized strong nonlinear Boussinesq equation without dissipation terms in p=1.
基金Project supported by the National Natural Science Foundation of China(Grant No.11971085)the Fund from the Chongqing Municipal Education Commission,China(Grant Nos.KJZD-M201800501 and CXQT19018)the Chongqing Research Program of Basic Research and Frontier Technology,China(Grant No.cstc2018jcyjAX0266)。
文摘An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete algebraic equations are established and are solved by an iterative algorithm. Convergence of the iterative algorithm is discussed. Shifted and scaled basis functions are incorporated into the method to guarantee convergence and stability of numerical results. Numerical examples are presented to demonstrate the high convergence rate and high computational accuracy of the method.
基金financially supported by the National Science and Technology Support Program of China(Grant No.2010BAC68B04)
文摘For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Boussinesq-type equations has been a practical problem for engineers. In this paper, approaches of improving the characteristics of the equations, i.e. linear dispersion, shoaling gradient and nonlinearity, are reviewed and the advantages and disadvantages of several different Boussinesq-type equations are compared for the applications of these Boussinesq-type equations in coastal engineering with relatively large sea areas. Then for improving the properties of Boussinesq-type equations, a new set of fully nonlinear Boussinseq-type equations with modified representative velocity are derived, which can be used for better linear dispersion and nonlinearity. Based on the method of minimizing the overall error in different ranges of applications, sets of parameters are determined with optimized linear dispersion, linear shoaling and nonlinearity, respectively. Finally, a test example is given for validating the results of this study. Both results show that the equations with optimized parameters display better characteristics than the ones obtained by matching with pad6 approximation.
文摘The multi-symplectic formulations of the 'Good' Boussinesq equation were considered. For the multi-symplectic formulation, a new fifteen-point difference scheme which is equivalent to the multi-symplectic Preissman integrator was derived. The numerical experiments show that, the multi- symplectic scheme have excellent long-time numerical. behavior.
文摘In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.
基金The project was financially supported by the National Natural Science Foundation of China(Grant No.59979002 and No 59839330)
文摘Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq equations derived by Zou (1999) and the other is the classic Boussinesq equations, Physical experiments are conducted, three different front slopes (1:10, 1:5 and 1:2) of the shelf are set up in the experiment and their effects on wave propagation are investigated. Comparisons of numerical results with test data are made, the model of higher-order Boussinesq equations agrees much better with the measurements than the model of the classical Boussinesq equations, The results show that the higher-order Boussinesq equations can also be applied to the steeper slope case although the mild slope assumption is employed in the derivation of the higher order terms of higher order Boussinesq equations.
文摘Both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou are extended to reduce the high-order modified Boussinesq equation with the damping term (HMBEDT) arising in the general Fermi-Pasta-Ulam model. As a result, several types of similarity reductions are obtained. It is easy to show that the nonlinear wave equation is not integrable under the sense of AblowRz's conjecture from the reduction results obtained. In addition, kink-shaped solitary wave solutions, which are of important physical significance, are found for HMBEDT based on the obtained reduction equation.
基金partially supported by Grant No.DFNI I-02/9 of the Bulgarian Science Fund
文摘Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.
基金supported by the National Natural Science Foundation of China(Grants No.51409168 and 51579090)the Fundamental Research Funds for the Central Universities(Grant No.2015B15714)the Jiangsu Key Laboratory of Coast Ocean Resources Development and Environment Security(Grant No.JSCE201508)
文摘An edge wave numerical model was developed based on extended Boussinesq equations with the internal wave-generation method. The form of edge waves near a seawall was chosen as the input signal in order to avoid treatment of the moving shoreline on a sloping beach. As there was an energy transfer between different edge wave modes, not only the target mode but also other modes appeared in the simulations. Due to the nonlinear effect, the simulation results for mode-0 edge waves were slightly modulated by mode-1 and mode-2 waves. As the magnitudes of these higher-mode waves are not significantly related to those of the target mode, the internal wave-generation method in Boussinesq equations can produce high-quality edge waves. The numerical model was used to investigate the nonlinear properties of standing edge waves, and the numerical results were in strong agreement with theory.
基金This work was financially supported by the Science Foundation of National Education Committee of China (Grant No.40106008) and by LED, South China Sea Institute of Oceanology, Chinese Academy of Sciences.
文摘A new approach to high-order Boussinesq-type equations with ambient currents is presented. The current velocity is assumed to be uniform over depth and of the same magnitude as the shallow water wave celerity. The wave velocity field is expressed in terms of the horizontal and vertical wave velocity components at an arbitrary water depth level. Linear operators are introduced to improve the accuracy of the kinematic condition at the sea bottom. The dynamic and kinematic conditions at the free surface are expressed in terms of wave velocity variables defined directly on the free surface. The new equations provide high accuracy of linear properties as well as nonlinear properties from shallow to deep water, and extend the applicable range of relative water depth in the case of opposing currents.
文摘Trial equation method is a powerful tool for obtaining exact solutions of nonlinear differential equations. In this paper, the improved Boussinesq is reduced to an ordinary differential equation under the travelling wave transformation. Trial equation method and the theory of complete discrimination system for polynomial are used to establish exact solutions of the improved Boussinesq equation.
基金Knowledge Innovation Programs of the Chinese Academy of Sciences under contract Nos KZCX2-YW-201 and KZCX1-YW-12Natural Science Fund supported by the Educational Department of Inner Mongolia under contract Nos NJzy080005,and NJ09011A Grant from Science Fund for Young Scholars of Inner Mongolia University under contract NoND0801
文摘Interracial waves propagating along the interface between a three-dimensional two-fluid system with a rigid upper boundary and an uneven bottom are considered. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. A set of higher-order Boussinesq-type equations in terms of the depth-averaged velocities accounting for stronger nonlinearity are derived. When the small parameter measuring frequency dispersion keeping up to lower-order and full nonlinearity are considered, the equations include the Choi and Camassa's results (1999). The enhanced equations in terms of the depth-averaged velocities are obtained by applying the enhancement technique introduced by Madsen et al. (1991) and Schaffer and Madsen (1995a). It is noted that the equations derived from the present study include, as special cases, those obtained by Madsen and Schaffer (1998). By comparison with the dispersion relation of the linear Stokes waves, we found that the dispersion relation is more improved than Choi and Camassa's (1999) results, and the applicable scope of water depth is deeper.
文摘Boussinesq-type equations and mild-slope equations are compared in terms of their basic forms and characteristics. It is concluded that linear mild-slope equations on dispersion relation are better than non-linear Boussinesq equations. In addition, Berkhoffexperiments are computed and compared by the two models, and agreement between model results and available experimental data is found to be quite reasonable, which demonstrates the two models' capacity to simulate wave transformation. However they can deal with different physical processes respectively, and they have their own characteristics.
文摘The (G'/G)-expansion method is simple and powerful mathematical tool for constructing traveling wave solutions of nonlinear evolution equations which arise in engineering sciences, mathematical physics and real time application fields. In this article, we have obtained exact traveling wave solutions of the nonlinear partial differential equation, namely, the fourth order Boussinesq equation involving parameters via the (G'/G)-expansion method. In this method, the general solution of the second order linear ordinary differential equation with constant coefficients is implemented. Further, the solitons and periodic solutions are described through three different families. In addition, some of obtained solutions are described in the figures with the aid of commercial software Maple.