Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of th...Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.展开更多
A higher-order boundary element method(HOBEM) for simulating the fully nonlinear regular wave propagation and diffraction around a fixed vertical circular cylinder is investigated. The domain decomposition method with...A higher-order boundary element method(HOBEM) for simulating the fully nonlinear regular wave propagation and diffraction around a fixed vertical circular cylinder is investigated. The domain decomposition method with continuity conditions enforced on the interfaces between the adjacent sub-domains is implemented for reducing the computational cost. By adjusting the algorithm of iterative procedure on the interfaces, four types of coupling strategies are established, that is, Dirchlet/Dirchlet-Neumman/Neumman(D/D-N/N), Dirchlet-Neumman(D-N),Neumman-Dirchlet(N-D) and Mixed Dirchlet-Neumman/Neumman-Dirchlet(Mixed D-N/N-D). Numerical simulations indicate that the domain decomposition methods can provide accurate results compared with that of the single domain method. According to the comparisons of computational efficiency, the D/D-N/N coupling strategy is recommended for the wave propagation problem. As for the wave-body interaction problem, the Mixed D-N/N-D coupling strategy can obtain the highest computational efficiency.展开更多
The present paper is devoted to the convergence control and accelerating the traditional Decomposition Methodof Adomian (ADM). By means of perturbing the initial or early terms of the Adomian iterates by adding aparam...The present paper is devoted to the convergence control and accelerating the traditional Decomposition Methodof Adomian (ADM). By means of perturbing the initial or early terms of the Adomian iterates by adding aparameterized term, containing an embedded parameter, new modified ADM is constructed. The optimal value ofthis parameter is later determined via squared residual minimizing the error. The failure of the classical ADM is alsoprevented by a suitable value of the embedded parameter, particularly beneficial for the Duan–Rach modification ofthe ADM incorporating all the boundaries into the formulation. With the presented squared residual error analysis,there is no need to check out the results against the numerical ones, as usually has to be done in the traditional ADMstudies to convince the readers that the results are indeed converged to the realistic solutions. Physical examplesselected from the recent application of ADM demonstrate the validity, accuracy and power of the presented novelapproach in this paper. Hence, the highly nonlinear equations arising from engineering applications can be safelytreated by the outlined method for which the classical ADM may fail or be slow to converge.展开更多
The nonlinear partial differential equation is solved using the Adomian decomposition method (ADM) in this article. A number of examples have been provided to illustrate the numerical results, which is the comparison ...The nonlinear partial differential equation is solved using the Adomian decomposition method (ADM) in this article. A number of examples have been provided to illustrate the numerical results, which is the comparison of the exact and numerical solutions, and it has been discovered through the tables that the amount of error between the exact and numerical solutions is very small and almost non-existent, and the graph also shows how the exact solution of absolutely applies to the numerical solution. This demonstrates the precision of the Adomian decomposition method (ADM) for solving the nonlinear partial differential equation with Maple18. And that in terms of obtaining numerical results, this approach is characterized by ease, speed, and high accuracy.展开更多
In this paper, a numerical solution of nonlinear partial differential equation, Benjamin-Bona-Mahony (BBM) and Cahn-Hilliard equation is presented by using Adomain Decomposition Method (ADM) and Variational Iteration ...In this paper, a numerical solution of nonlinear partial differential equation, Benjamin-Bona-Mahony (BBM) and Cahn-Hilliard equation is presented by using Adomain Decomposition Method (ADM) and Variational Iteration Method (VIM). The results reveal that the two methods are very effective, simple and very close to the exact solution.展开更多
This paper presents a new decomposition method for solving large-scale systems of nonlinear equations. The new method is of superlinear convergence speed and has rather less computa tional complexity than the Newton-t...This paper presents a new decomposition method for solving large-scale systems of nonlinear equations. The new method is of superlinear convergence speed and has rather less computa tional complexity than the Newton-type decomposition method as well as other known numerical methods, Primal numerical experiments show the superiority of the new method to the others.展开更多
Adomian decomposition method is applied to find the analytical and numerical solutions for the discretizedmKdV equation.A numerical scheme is proposed to solve the long-time behavior of the discretized mKdV equation.T...Adomian decomposition method is applied to find the analytical and numerical solutions for the discretizedmKdV equation.A numerical scheme is proposed to solve the long-time behavior of the discretized mKdV equation.The procedure presented here can be used to solve other differential-difference equations.展开更多
In this paper, we focus on a class of nonlinear bilevel programming problems where the follower’s objective is a function of the linear expression of all variables, and the follower’s constraint functions are convex...In this paper, we focus on a class of nonlinear bilevel programming problems where the follower’s objective is a function of the linear expression of all variables, and the follower’s constraint functions are convex with respect to the follower’s variables. First, based on the features of the follower’s problem, we give a new decomposition scheme by which the follower’s optimal solution can be obtained easily. Then, to solve efficiently this class of problems by using evolutionary algorithm, novel evolutionary operators are designed by considering the best individuals and the diversity of individuals in the populations. Finally, based on these techniques, a new evolutionary algorithm is proposed. The numerical results on 20 test problems illustrate that the proposed algorithm is efficient and stable.展开更多
We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robus...We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.展开更多
Higher-order numeric solutions for nonlinear differential equations based on the Rach-Adomian-Meyers modified decomposition method are designed in this work. The presented one-step numeric algorithm has a high efficie...Higher-order numeric solutions for nonlinear differential equations based on the Rach-Adomian-Meyers modified decomposition method are designed in this work. The presented one-step numeric algorithm has a high efficiency due to the new, efficient algorithms of the Adomian polynomials, and it enables us to easily generate a higher-order numeric scheme such as a 10th-order scheme, while for the Runge-Kutta method, there is no general procedure to generate higher-order numeric solutions. Finally, the method is demonstrated by using the Duffing equation and the pendulum equation.展开更多
In this paper, we obtain a formula for the derivative of a determinant with respect to an eigenvalue in the modified Cholesky decomposition of a symmetric matrix, a characteristic example of a direct solution method i...In this paper, we obtain a formula for the derivative of a determinant with respect to an eigenvalue in the modified Cholesky decomposition of a symmetric matrix, a characteristic example of a direct solution method in computational linear algebra. We apply our proposed formula to a technique used in nonlinear finite-element methods and discuss methods for determining singular points, such as bifurcation points and limit points. In our proposed method, the increment in arc length (or other relevant quantities) may be determined automatically, allowing a reduction in the number of basic parameters. The method is particularly effective for banded matrices, which allow a significant reduction in memory requirements as compared to dense matrices. We discuss the theoretical foundations of our proposed method, present algorithms and programs that implement it, and conduct numerical experiments to investigate its effectiveness.展开更多
Results on the composite generalized Laguerre-Legendre interpolation in unbounded domains are established. As an application,a composite Laguerre-Legendre pseudospectral scheme is presented for nonlinear Fokker-Planck...Results on the composite generalized Laguerre-Legendre interpolation in unbounded domains are established. As an application,a composite Laguerre-Legendre pseudospectral scheme is presented for nonlinear Fokker-Planck equations on the whole line. The convergence and the stability of the proposed scheme are proved. Numerical results show the efficiency of the scheme and conform well to theoretical analysis.展开更多
In this paper, the improved Adomian decomposition method (ADM) is applied to the nonlinear Schrödinger’s equation (NLSE), one of the most important partial differential equations in quantum mechanics that gov...In this paper, the improved Adomian decomposition method (ADM) is applied to the nonlinear Schrödinger’s equation (NLSE), one of the most important partial differential equations in quantum mechanics that governs the propagation of solitons through optical fibers. The performance and the accuracy of our improved method are supported by investigating several numerical examples that include initial conditions. The obtained results are compared with the exact solutions. It is shown that the method does not need linearization, weak or perturbation theory to obtain the solutions.展开更多
This paper gives a mathematical definition for the "caution" and "probing", and presents a decomposition theorem for nonlinear discrete-time stochastic systems. Under some assumptions, the problem ...This paper gives a mathematical definition for the "caution" and "probing", and presents a decomposition theorem for nonlinear discrete-time stochastic systems. Under some assumptions, the problem of finding the closed-loop optimal control can be decomposed into three problems: the deterministic optimal feedback, cautious optimal and probing optimal control problems.展开更多
The analysis of circuits is frequently required in the electricity of physics. When analyzing circuits, the general idea is to study the issues related to nonlinear resistance circuits based on commonly used physical ...The analysis of circuits is frequently required in the electricity of physics. When analyzing circuits, the general idea is to study the issues related to nonlinear resistance circuits based on commonly used physical and electrical theory. Generally, circuits can be divided into linear resistance circuits and nonlinear resistance circuits. However, for some nonlinear resistance circuit, a small part of them are decomposed through subsection linearity while most of them are adopted the form of hieroglyph combination for subsection decomposition fitting analysis. For the following contents, the author will adopt curve layout method to analyze nonlinear resistance element and relation characteristics of voltage and current;to state the characteristics and nature of common electronic elements in our life, and concepts of concave resistance and convex resistance;to analyze the characteristics of nonlinear resistance circuits through electrical circuit analysis method based on the electrical theorem of physics;finally, to analyze referring to actual cases, study the veracity, verify the feasibility and scientificity of the adopted analytical approach, apply image graphics of the resistance circuits in the convenient way to solve complicated design problems among actual electrical problems.展开更多
In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and ...In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and the system of Hirota-Satsuma coupled KdV. In addition, the results obtained from Laplace decomposition method (LDM) and Pade approximant are compared with corresponding exact analytical solutions.展开更多
The Adomian decomposition method (ADM) can be used to solve a wide range of problems and usually gets the solution in a series form. In this paper, we propose two-step Adomian Decomposition Method (TSAM) for nonlinear...The Adomian decomposition method (ADM) can be used to solve a wide range of problems and usually gets the solution in a series form. In this paper, we propose two-step Adomian Decomposition Method (TSAM) for nonlinear integro-differential equations that will facilitate the calculations. In this modification, compared to the standard Adomian decomposition method, the size of calculations was reduced. This modification also avoids computing Adomian polynomials. Numerical results are given to show the efficiency and performance of this method.展开更多
In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes eq...In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations are reduced to nonlinear ordinary differential equations to model the problem. The obtained results are well agreed with that of the Runge-Kutta method. The present plots confirm that the method has high accuracy for different a, Ha, and Re numbers. The flow field inside the divergent channel is studied for various values of Hartmann :number and angle of channel. The effect of nanoparticle volume fraction in the absence of magnetic field is investigated.展开更多
A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, i...A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression.展开更多
Wave decomposition phenomenon and spectrum evolution over submerged bars are investigated by a previously developed numerical model. First, the computed free surface displacements of regular waves at various locations...Wave decomposition phenomenon and spectrum evolution over submerged bars are investigated by a previously developed numerical model. First, the computed free surface displacements of regular waves at various locations are compared with the available experimental data to confirm the validity of the numerical model, and satisfactory agreements are obtained. In addition, variations of decomposition characteristics with incident wave parameters and the change of energy spectrum for regular waves are also studied. Then the spectrum evolution of irregular waves over submerged bars, as well as the influence of incident peak wave period and the steepness of the front slope of the bar on spectrum evolution, is investigated. Wave decomposition and spectral shape are found to be significantly influenced by the incident wave conditions. When the upslope of the bar becomes 1:2, the length of the slope becomes shorter and will not benefit the generation of high frequency energy, so spectrum evolution is not significant.展开更多
基金supported by the National Natural Science Foundation of China(Nos.1133200711202147+2 种基金and 9216111)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120032120007)the Open Fund from State Key Laboratory of Aerodynamics(Nos.SKLA201201 and SKLA201301)
文摘Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.
基金supported by the National Natural Science Foundation of China(Grant No.51490673)the Pre-Research Field Fund Project of the Central Military Commission of China(Grant No.61402070201)the Fundamental Research Funds for the Central Universities(Grant No.DUT18LK09)
文摘A higher-order boundary element method(HOBEM) for simulating the fully nonlinear regular wave propagation and diffraction around a fixed vertical circular cylinder is investigated. The domain decomposition method with continuity conditions enforced on the interfaces between the adjacent sub-domains is implemented for reducing the computational cost. By adjusting the algorithm of iterative procedure on the interfaces, four types of coupling strategies are established, that is, Dirchlet/Dirchlet-Neumman/Neumman(D/D-N/N), Dirchlet-Neumman(D-N),Neumman-Dirchlet(N-D) and Mixed Dirchlet-Neumman/Neumman-Dirchlet(Mixed D-N/N-D). Numerical simulations indicate that the domain decomposition methods can provide accurate results compared with that of the single domain method. According to the comparisons of computational efficiency, the D/D-N/N coupling strategy is recommended for the wave propagation problem. As for the wave-body interaction problem, the Mixed D-N/N-D coupling strategy can obtain the highest computational efficiency.
文摘The present paper is devoted to the convergence control and accelerating the traditional Decomposition Methodof Adomian (ADM). By means of perturbing the initial or early terms of the Adomian iterates by adding aparameterized term, containing an embedded parameter, new modified ADM is constructed. The optimal value ofthis parameter is later determined via squared residual minimizing the error. The failure of the classical ADM is alsoprevented by a suitable value of the embedded parameter, particularly beneficial for the Duan–Rach modification ofthe ADM incorporating all the boundaries into the formulation. With the presented squared residual error analysis,there is no need to check out the results against the numerical ones, as usually has to be done in the traditional ADMstudies to convince the readers that the results are indeed converged to the realistic solutions. Physical examplesselected from the recent application of ADM demonstrate the validity, accuracy and power of the presented novelapproach in this paper. Hence, the highly nonlinear equations arising from engineering applications can be safelytreated by the outlined method for which the classical ADM may fail or be slow to converge.
文摘The nonlinear partial differential equation is solved using the Adomian decomposition method (ADM) in this article. A number of examples have been provided to illustrate the numerical results, which is the comparison of the exact and numerical solutions, and it has been discovered through the tables that the amount of error between the exact and numerical solutions is very small and almost non-existent, and the graph also shows how the exact solution of absolutely applies to the numerical solution. This demonstrates the precision of the Adomian decomposition method (ADM) for solving the nonlinear partial differential equation with Maple18. And that in terms of obtaining numerical results, this approach is characterized by ease, speed, and high accuracy.
文摘In this paper, a numerical solution of nonlinear partial differential equation, Benjamin-Bona-Mahony (BBM) and Cahn-Hilliard equation is presented by using Adomain Decomposition Method (ADM) and Variational Iteration Method (VIM). The results reveal that the two methods are very effective, simple and very close to the exact solution.
文摘This paper presents a new decomposition method for solving large-scale systems of nonlinear equations. The new method is of superlinear convergence speed and has rather less computa tional complexity than the Newton-type decomposition method as well as other known numerical methods, Primal numerical experiments show the superiority of the new method to the others.
基金The project supported by National Natural Science Foundation of China under Grant No.10672147the Natural Science Foundation of Zhejiang Province under Grant No.Y605312
文摘Adomian decomposition method is applied to find the analytical and numerical solutions for the discretizedmKdV equation.A numerical scheme is proposed to solve the long-time behavior of the discretized mKdV equation.The procedure presented here can be used to solve other differential-difference equations.
文摘In this paper, we focus on a class of nonlinear bilevel programming problems where the follower’s objective is a function of the linear expression of all variables, and the follower’s constraint functions are convex with respect to the follower’s variables. First, based on the features of the follower’s problem, we give a new decomposition scheme by which the follower’s optimal solution can be obtained easily. Then, to solve efficiently this class of problems by using evolutionary algorithm, novel evolutionary operators are designed by considering the best individuals and the diversity of individuals in the populations. Finally, based on these techniques, a new evolutionary algorithm is proposed. The numerical results on 20 test problems illustrate that the proposed algorithm is efficient and stable.
文摘We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.
文摘Higher-order numeric solutions for nonlinear differential equations based on the Rach-Adomian-Meyers modified decomposition method are designed in this work. The presented one-step numeric algorithm has a high efficiency due to the new, efficient algorithms of the Adomian polynomials, and it enables us to easily generate a higher-order numeric scheme such as a 10th-order scheme, while for the Runge-Kutta method, there is no general procedure to generate higher-order numeric solutions. Finally, the method is demonstrated by using the Duffing equation and the pendulum equation.
文摘In this paper, we obtain a formula for the derivative of a determinant with respect to an eigenvalue in the modified Cholesky decomposition of a symmetric matrix, a characteristic example of a direct solution method in computational linear algebra. We apply our proposed formula to a technique used in nonlinear finite-element methods and discuss methods for determining singular points, such as bifurcation points and limit points. In our proposed method, the increment in arc length (or other relevant quantities) may be determined automatically, allowing a reduction in the number of basic parameters. The method is particularly effective for banded matrices, which allow a significant reduction in memory requirements as compared to dense matrices. We discuss the theoretical foundations of our proposed method, present algorithms and programs that implement it, and conduct numerical experiments to investigate its effectiveness.
文摘Results on the composite generalized Laguerre-Legendre interpolation in unbounded domains are established. As an application,a composite Laguerre-Legendre pseudospectral scheme is presented for nonlinear Fokker-Planck equations on the whole line. The convergence and the stability of the proposed scheme are proved. Numerical results show the efficiency of the scheme and conform well to theoretical analysis.
文摘In this paper, the improved Adomian decomposition method (ADM) is applied to the nonlinear Schrödinger’s equation (NLSE), one of the most important partial differential equations in quantum mechanics that governs the propagation of solitons through optical fibers. The performance and the accuracy of our improved method are supported by investigating several numerical examples that include initial conditions. The obtained results are compared with the exact solutions. It is shown that the method does not need linearization, weak or perturbation theory to obtain the solutions.
文摘This paper gives a mathematical definition for the "caution" and "probing", and presents a decomposition theorem for nonlinear discrete-time stochastic systems. Under some assumptions, the problem of finding the closed-loop optimal control can be decomposed into three problems: the deterministic optimal feedback, cautious optimal and probing optimal control problems.
文摘The analysis of circuits is frequently required in the electricity of physics. When analyzing circuits, the general idea is to study the issues related to nonlinear resistance circuits based on commonly used physical and electrical theory. Generally, circuits can be divided into linear resistance circuits and nonlinear resistance circuits. However, for some nonlinear resistance circuit, a small part of them are decomposed through subsection linearity while most of them are adopted the form of hieroglyph combination for subsection decomposition fitting analysis. For the following contents, the author will adopt curve layout method to analyze nonlinear resistance element and relation characteristics of voltage and current;to state the characteristics and nature of common electronic elements in our life, and concepts of concave resistance and convex resistance;to analyze the characteristics of nonlinear resistance circuits through electrical circuit analysis method based on the electrical theorem of physics;finally, to analyze referring to actual cases, study the veracity, verify the feasibility and scientificity of the adopted analytical approach, apply image graphics of the resistance circuits in the convenient way to solve complicated design problems among actual electrical problems.
文摘In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and the system of Hirota-Satsuma coupled KdV. In addition, the results obtained from Laplace decomposition method (LDM) and Pade approximant are compared with corresponding exact analytical solutions.
文摘The Adomian decomposition method (ADM) can be used to solve a wide range of problems and usually gets the solution in a series form. In this paper, we propose two-step Adomian Decomposition Method (TSAM) for nonlinear integro-differential equations that will facilitate the calculations. In this modification, compared to the standard Adomian decomposition method, the size of calculations was reduced. This modification also avoids computing Adomian polynomials. Numerical results are given to show the efficiency and performance of this method.
文摘In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations are reduced to nonlinear ordinary differential equations to model the problem. The obtained results are well agreed with that of the Runge-Kutta method. The present plots confirm that the method has high accuracy for different a, Ha, and Re numbers. The flow field inside the divergent channel is studied for various values of Hartmann :number and angle of channel. The effect of nanoparticle volume fraction in the absence of magnetic field is investigated.
基金This project was supported by the National Natural Science Foundation of China (60532060)Hainan Education Bureau Research Project (Hjkj200602)Hainan Natural Science Foundation (80551).
文摘A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression.
基金The National Natural Science Foundation of China for Distinguished Young Scholars under contract No. 50025925the Chinese Postdoctoral Science Foundation under contract No. 20040350088
文摘Wave decomposition phenomenon and spectrum evolution over submerged bars are investigated by a previously developed numerical model. First, the computed free surface displacements of regular waves at various locations are compared with the available experimental data to confirm the validity of the numerical model, and satisfactory agreements are obtained. In addition, variations of decomposition characteristics with incident wave parameters and the change of energy spectrum for regular waves are also studied. Then the spectrum evolution of irregular waves over submerged bars, as well as the influence of incident peak wave period and the steepness of the front slope of the bar on spectrum evolution, is investigated. Wave decomposition and spectral shape are found to be significantly influenced by the incident wave conditions. When the upslope of the bar becomes 1:2, the length of the slope becomes shorter and will not benefit the generation of high frequency energy, so spectrum evolution is not significant.