For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete alg...An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete algebraic equations are established and are solved by an iterative algorithm. Convergence of the iterative algorithm is discussed. Shifted and scaled basis functions are incorporated into the method to guarantee convergence and stability of numerical results. Numerical examples are presented to demonstrate the high convergence rate and high computational accuracy of the method.展开更多
The symmetries and the exact solutions of the (3+l)-dimensional nonlinear incompressible non-hydrostatic Boussi- nesq (INHB) equations, which describe atmospheric gravity waves, are studied in this paper. The cal...The symmetries and the exact solutions of the (3+l)-dimensional nonlinear incompressible non-hydrostatic Boussi- nesq (INHB) equations, which describe atmospheric gravity waves, are studied in this paper. The calculation on symmetry shows that the equations are invariant under the Galilean transformations, the scaling transformations, and the space-time translations. Three types of symmetry reduction equations and similar solutions for the (3+ 1)-dimensional INHB equations are proposed. Traveling and non-traveling wave solutions of the INHB equations are demonstrated. The evolutions of the wind velocities in latitudinal, longitudinal, and vertical directions with space-time are demonstrated. The periodicity and the atmosphere viscosity are displayed in the (3+1)-dimensional INHB system.展开更多
The Hamiltonian formulations of the linear 'good' Boussinesq (L.G.B.) equation and the multi-symplectic formulation of the nonlinear 'good' Boussinesq (N.G.B.) equation are considered. For the multi-sy...The Hamiltonian formulations of the linear 'good' Boussinesq (L.G.B.) equation and the multi-symplectic formulation of the nonlinear 'good' Boussinesq (N.G.B.) equation are considered. For the multi-symplectic formulation, a new fifteen-point difference scheme which is equivalent to the multi-symplectic Preissmann integrator is derived. We also present numerical experiments, which show that the symplectic and multi-symplectic schemes have excellent long-time numerical behavior.展开更多
Exact solutions of the atmospheric(2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq(INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, severa...Exact solutions of the atmospheric(2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq(INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space.展开更多
The fractional derivatives in the sense of Caputo, and the homotopy perturbation method are used to construct the approximate solutions for nonlinear variant Boussinesq equations with respect to time fractional deriva...The fractional derivatives in the sense of Caputo, and the homotopy perturbation method are used to construct the approximate solutions for nonlinear variant Boussinesq equations with respect to time fractional derivative. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.展开更多
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11971085)the Fund from the Chongqing Municipal Education Commission,China(Grant Nos.KJZD-M201800501 and CXQT19018)the Chongqing Research Program of Basic Research and Frontier Technology,China(Grant No.cstc2018jcyjAX0266)。
文摘An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete algebraic equations are established and are solved by an iterative algorithm. Convergence of the iterative algorithm is discussed. Shifted and scaled basis functions are incorporated into the method to guarantee convergence and stability of numerical results. Numerical examples are presented to demonstrate the high convergence rate and high computational accuracy of the method.
基金Project supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 10452840301004616 and S2011040000403)the National Natural Science Foundation of China (Grant No. 41176005)the Science and Technology Project Foundation of Zhongshan, China (Grnat No. 20123A326)
文摘The symmetries and the exact solutions of the (3+l)-dimensional nonlinear incompressible non-hydrostatic Boussi- nesq (INHB) equations, which describe atmospheric gravity waves, are studied in this paper. The calculation on symmetry shows that the equations are invariant under the Galilean transformations, the scaling transformations, and the space-time translations. Three types of symmetry reduction equations and similar solutions for the (3+ 1)-dimensional INHB equations are proposed. Traveling and non-traveling wave solutions of the INHB equations are demonstrated. The evolutions of the wind velocities in latitudinal, longitudinal, and vertical directions with space-time are demonstrated. The periodicity and the atmosphere viscosity are displayed in the (3+1)-dimensional INHB system.
基金Supported by State Key Laboratory of Scientific/Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences and Foundation of office of overseas Chinese affair under the state council (02
文摘The Hamiltonian formulations of the linear 'good' Boussinesq (L.G.B.) equation and the multi-symplectic formulation of the nonlinear 'good' Boussinesq (N.G.B.) equation are considered. For the multi-symplectic formulation, a new fifteen-point difference scheme which is equivalent to the multi-symplectic Preissmann integrator is derived. We also present numerical experiments, which show that the symplectic and multi-symplectic schemes have excellent long-time numerical behavior.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11305031 and 11305106Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No.Yq2013205
文摘Exact solutions of the atmospheric(2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq(INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space.
文摘The fractional derivatives in the sense of Caputo, and the homotopy perturbation method are used to construct the approximate solutions for nonlinear variant Boussinesq equations with respect to time fractional derivative. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.