This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is design...This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.展开更多
In the present study, the Volterra series theory is adopted to theoretically investigate the force transmissibility of multiple degrees of freedom (MDOF) structures, in which an isolator with nonlinear anti-symmetri...In the present study, the Volterra series theory is adopted to theoretically investigate the force transmissibility of multiple degrees of freedom (MDOF) structures, in which an isolator with nonlinear anti-symmetric viscous damping is assembled. The results reveal that the anti-symmetric nonlinear viscous damping can significantly reduce the force trans- missibility over all resonance regions for MDOF structures with little effect on the transmissibility over non-resonant and isolation regions. The results indicate that the vibration isolators with an anti-symmetric damping characteristic have great potential to solve the dilemma occurring in the design of linear viscously damped vibration isolators where an increase of the damping level reduces the force transmissibility over resonant frequencies but increases the transmissibility over non-resonant frequency regions. This work is an extension of a previous study in which MDOF structures installed on the mount through an isolator with cubic nonlinear damping are considered. The theoretical analysis results are also verified by simulation studies.展开更多
Nonlinear dynamical systems with an irrational restoring force often occur in both science and engineering, and always lead to a barrier for conventional nonlinear techniques. In this paper, we have investigated the g...Nonlinear dynamical systems with an irrational restoring force often occur in both science and engineering, and always lead to a barrier for conventional nonlinear techniques. In this paper, we have investigated the global bifurcations and the chaos directly for a nonlinear system with irrational nonlinearity avoiding the conventional Taylor's expansion to retain the natural characteristics of the system. A series of transformations are proposed to convert the homoclinic orbits of the unperturbed system to the heteroclinic orbits in the new coordinate, which can be transformed back to the analytical expressions of the homoclinic orbits. Melnikov's method is employed to obtain the criteria for chaotic motion, which implies that the existence of homoclinic orbits to chaos arose from the breaking of homoclinic orbits under the perturbation of damping and external forcing. The efficiency of the criteria for chaotic motion obtained in this paper is verified via bifurcation diagrams, Lyapunov exponents, and numerical simulations. It is worthwhile noting that our study is an attempt to make a step toward the solution of the problem proposed by Cao Q J et al. (Cao Q J, Wiercigroch M, Pavlovskaia E E, Thompson J M T and Grebogi C 2008 Phil. Trans. R. Soe. A 366 635).展开更多
Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on t...Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on three typical box decks (i.e., fully closed box, centrally slotted box, and semi-closed box). The mechanisms of the onset, development, and self-limiting phenomenon of the vertical vortex-induced vibration (VlV) were also explored by analyzing the energy evolution of different vertical VIF components and their contributions to the vertical VIV responses. The results show that the nonlinear components of the vertical VIF often differ from deck to deck; the most important components of the vertical VIF, governing the stable amplitudes of the vertical VIV responses, are the linear and cubic components of velocity contained in the self-excited aerodynamic damping forces. The former provides a constant negative damping ratio to the vibration system and is thus the essential power driving the development of the VIV amplitude, while the latter provides a positive damping ratio proportional to the square of the vibration velocity and is actually the inherent factor making the VIV amplitude self-limiting. On these bases, a universal simplified nonlinear mathematical model of the vertical VIF on box decks of bridges is presented and verified in this paper; it can be used to predict the stable amplitudes of the vertical VIV of long-span bridges with satisfactory accuracy.展开更多
The max collision force of ship-bridge collision is one of the most importantreferences for bridge design. By mean linear digital simulation method, the collision forces ofthe collisions between rigid bridge pier and ...The max collision force of ship-bridge collision is one of the most importantreferences for bridge design. By mean linear digital simulation method, the collision forces ofthe collisions between rigid bridge pier and ship bow were calculated out for four different ships,whose tonnages are 5 000,10 000,50 000 and 60 000 DWT respectively. Curves of collisionforce-penetration and absorbed energy-penetration are obtained, and the data of the max loads arethen summarized. On the basis of these curves and data, a set of curves describing therelationships between max collision forces and tonnages of the ships are successfully presented, bywhich the max collision forces of the ships-bridge with different tonnages and in differentvelocities can be estimated easily and reliably.展开更多
The effect of oil film force nonlinearity on unbalance response of Jeffcot rotor elliptical bearing system is studied. Linear analysis is done by linearizing the bearing oil film dynamic forces and expressing them wi...The effect of oil film force nonlinearity on unbalance response of Jeffcot rotor elliptical bearing system is studied. Linear analysis is done by linearizing the bearing oil film dynamic forces and expressing them with stiffness and damping constants. Nonlinear dynamic simulation is done by taking the nonlinearity of bearing oil film dynamic force into full consideration, with the latter being expressed by a special database which is generated beforehand, and based on non stationary Reynolds equation and Reynolds boundary condition of film rupture. The linear and nonlinear unbalance responses of a Jeffcot rotor supported on a pair of elliptical bearings is studied. The resulting dynamic characteristics and rotor and journal whirling orbits are compared. While good consistancy between nonlinear and linear predictions is found under very small unbalance, significant or even drastic differences are found whenever the unbalance is not small, indicating the necessity of including the nonlinearity of oil film dynamic forces, especially when response to large unbalance is to be predicted.展开更多
The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the ...The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the forced dissipative nonlinear atmospheric equations is obtained on account of the concept of computational quasi-stability, Therefore, it provides the new train of thought and theoretical basis for designing computational stable difference scheme of the forced dissipative nonlinear atmospheric equations. Key words Computational quasi-stability - Computational stability - Forced dissipative nonlinear evolution equation - Explicit difference scheme This work was supported by the National Outstanding Youth Scientist Foundation of China (Grant No. 49825109), the Key Innovation Project of Chinese Academy of Sciences (KZCX1-10-07), the National Natural Science Foundation of China (Grant Nos, 49905007 and 49975020) and the Outstanding State Key Laboratory Project (Grant No. 40023001).展开更多
In the present study, the concept of the output frequency response function is applied to theoretically investigate the force transmissibility of multi-degree of freedom (MDOF) structures with a nonlinear anti-symmetr...In the present study, the concept of the output frequency response function is applied to theoretically investigate the force transmissibility of multi-degree of freedom (MDOF) structures with a nonlinear anti-symmetric viscous damping. The results reveal that an anti-symmetric nonlinear viscous damping can significantly reduce the transmissibility over all resonance regions for MDOF structures while it has almost no effect on the transmissibility over non-resonant and isolation regions. The results indicate that the vibration isolators with an anti-symmetric damping characteristic have great potential to overcome the dilemma in the design of linear viscously damped vibration isolators where an increase of the damping level reduces the force transmissibility over resonant region but increases the transmissibility over non-resonant regions.展开更多
Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmos...Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmospheric and oceanic equations is analyzed and the computationally stable explicit complete square conservative difference schemes are constructed. The theoretical analysis and numerical experiment prove that the explicit complete square conservative difference schemes are computationally stable and deserve to be disseminated.展开更多
Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, un...Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, under the combined action of aerodynamic load and piezoelectric excitation, is introduced. Two-degree of freedom(DOF)nonlinear dynamic models for the time-varying coefficients describing the transverse vibration of the deploying laminate under the combined actions of a first-order aerodynamic force and piezoelectric excitation were obtained by selecting a suitable time-dependent modal function satisfying the displacement boundary conditions and applying second-order discretization using the Galerkin method. Using a numerical method, the time history curves of the deploying laminate were obtained, and its nonlinear dynamic characteristics,including extension speed and different piezoelectric excitations, were studied. The results suggest that the piezoelectric excitation has a clear effect on the change of the nonlinear dynamic characteristics of such piezoelectric laminated composite plates. The nonlinear vibration of the deploying cantilevered laminate can be effectively suppressed by choosing a suitable voltage and polarity.展开更多
We study the abruptly autofocusing and autodefocusing properties of the circular Airy Gaussian vortex(CAi GV)beams in strongly nonlocal nonlinear medium for the first time through numerical simulations.The magnitude o...We study the abruptly autofocusing and autodefocusing properties of the circular Airy Gaussian vortex(CAi GV)beams in strongly nonlocal nonlinear medium for the first time through numerical simulations.The magnitude of topological charges and the position of the vortex could change not only the light spot pattern but also the intensity contrast.Meanwhile,we can change the position of the autofocusing and autodefocusing planes by changing the parameter of the incident beam.Furthermore,we can control the peak intensity contrast through choosing properly the truncation factor.As for the radiation force,we study the gradient and the scattering forces of CAi GV beams on Rayleigh dielectric sphere.Our analyses demonstrate that the radiation force can be enhanced by choosing proper parameters of CAi GV beams.展开更多
The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation...The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation of the characteristic drag forces. Numerical computation is also performed for the investigation of the effects of nonlinearity of the drag forces. The results indicate that the wave drag forces calculated by linear wave theory are larger than those calculated by the third order Stokes wave theory for given waves. The difference between them increases with wave height. The wave drag forces calculated by use of linear approximation are about 5% smaller than their actual values when measured in the peak values of spectral densities. This will result in a safety problem for the design of offshore structures. Therefore, the nonlinear effect of wave drag forces should be taken into consideration in design and application of important offshore structures.展开更多
The primary resonances of a quadratic nonlinear system under weak and strong external excitations are investigated with the emphasis on the comparison of dif- ferent analytical approximate approaches. The forced vibra...The primary resonances of a quadratic nonlinear system under weak and strong external excitations are investigated with the emphasis on the comparison of dif- ferent analytical approximate approaches. The forced vibration of snap-through mecha- nism is treated as a quadratic nonlinear oscillator. The Lindstedt-Poincar method, the multiple-scale method, the averaging method, and the harmonic balance method are used to determine the amplitude-frequency response relationships of the steady-state responses. It is demonstrated that the zeroth-order harmonic components should be accounted in the application of the harmonic balance method. The analytical approximations are com- pared with the numerical integrations in terms of the frequency response curves and the phase portraits. Supported by the numerical results, the harmonic balance method pre- dicts that the quadratic nonlinearity bends the frequency response curves to the left. If the excitation amplitude is a second-order small quantity of the bookkeeping parameter, the steady-state responses predicted by the second-order approximation of the Lindstedt- Poincar method and the multiple-scale method agree qualitatively with the numerical results. It is demonstrated that the quadratic nonlinear system implies softening type nonlinearity for any quadratic nonlinear coefficients.展开更多
The discovery of the essential difference of maximum ion energy for TW-pslaser plasma interaction compared with, the 100 ns laser pulses led to the theory of a skin layermodel where the control of prepulses suppressed...The discovery of the essential difference of maximum ion energy for TW-pslaser plasma interaction compared with, the 100 ns laser pulses led to the theory of a skin layermodel where the control of prepulses suppressed the usual relativistic self-focusing. The subsequentgeneration of two nonlinear force driven blocks has been demonstrated experimentally and inextensive numerical studies where one block moves against the laser light and the other block intothe irradiated target. These blocks of nearly solid state density DT plasma correspond to ion beamcurrent densities exceeding 10^(10) A/cm^2 where the ion velocity can be chosen up to highlyrelativistic values. Using the results of the expected ignition of DT fuel by light ion beams, aself-sustained fusion reaction front may be generated even into uncompressed solid DT fuel similarto the Nuckolls-Wood scheme where 10 kJ laser pulses produce 100 MJ fusion energy. This new andsimplified scheme of laser-ICF needs and optimisation of the involved parameters.展开更多
A fundamental difference of very high intensity laser interaction with plasmas from solid targets appears with lasing at picosecond (ps) pulse durations in contrast to pulses of nanosec-onds (ns). This can be seen...A fundamental difference of very high intensity laser interaction with plasmas from solid targets appears with lasing at picosecond (ps) pulse durations in contrast to pulses of nanosec-onds (ns). This can be seen from the more than 10,000 times higher acceleration with ps pulse du-rations than with thermal pressure determined interaction. A ps pulse duration produces instantly acting high-efficiency nonlinear (ponderomotive) electrodynamic force dominated acceleration in contrast to heating with longer pulses. The ps pulses accelerate high-density plasma blocks. This can be used by a new scheme of side-on driven laser fusion with generating a flame ignition in uncompressed fusion fuel of solid density resulting in a reaction velocity of more than 2000 km/s for DT.展开更多
By introducing nonlinear frequency, using Floquet theory and referring to the characteristics of the solution when it passes through the transition boundaries, all kinds of bifurcation modes and their transition bound...By introducing nonlinear frequency, using Floquet theory and referring to the characteristics of the solution when it passes through the transition boundaries, all kinds of bifurcation modes and their transition boundaries of Duffing equation with two periodic excitations as well as the possible ways to chaos are studied in this paper.展开更多
In addition to the matured "Laser Inertial Fusion Energy (LIFE)" with spherical compression of deuterium-tritium (DI) for a pure fusion engine or for fusion-fission-hybrid operation, a very new scheme may have n...In addition to the matured "Laser Inertial Fusion Energy (LIFE)" with spherical compression of deuterium-tritium (DI) for a pure fusion engine or for fusion-fission-hybrid operation, a very new scheme may have now been opened by igniting the neutron-free reaction of proton-boron-11 (p-^11B) using side-on block ignition. Laser pulses of several petawatt power and ps duration led to thc discovery of an anomaly of interaction, if the prepulses are cut off by a factor 108 (contrast ratio) to avoid relativistic self focusing. In this case the Bobin-Chu conditions of side-on ignition of solid fusion fuel can be applied after several improvements leading to energy gains of 10,000 similar to the Nuckolls-Wood ignition with extremely intense 5 MeV electron beams. In contrast to the impossible laser-ignition of p-^11B by the usual spherical compression, the side-on ignition is less than ten times only more difficult of DT ignition. This p-^11B fusion produces less radioactivity per gained energy than burning coal. After encouraging success with computations based on the different nuclear cross sections, next steps are focusing on stability and transport problems.展开更多
We retrieve unknown nonlinear large space-time dependent forces burdened with the vibrating nonlinear Euler-Bernoulli beams under varied boundary data,comprising two-end fixed,cantilevered,clamped-hinged,and simply su...We retrieve unknown nonlinear large space-time dependent forces burdened with the vibrating nonlinear Euler-Bernoulli beams under varied boundary data,comprising two-end fixed,cantilevered,clamped-hinged,and simply supported conditions in this study.Even though some researchers used several schemes to overcome these forward problems of Euler-Bernoulli beams;however,an effective numerical algorithm to solve these inverse problems is still not available.We cope with the homogeneous boundary conditions,initial data,and final time datum for each type of nonlinear beam by employing a variety of boundary shape functions.The unknown nonlinear large external force can be recuperated via back-substitution of the solution into the nonlinear Euler-Bernoulli beam equation when we acquire the solution by utilizing the boundary shape function scheme and deal with a smallscale linear system to gratify an additional right-side boundary data.For the robustness and accuracy,we reveal that the current schemes are substantiated by comparing the recuperated numerical results of four instances to the exact forces,even though a large level of noise up to 50%is burdened with the overspecified conditions.The current method can be employed in the online real-time computation of unknown force functions in space-time for varied boundary supports of the vibrating nonlinear beam.展开更多
We consider the problem of measuring the electric charge of nanoparticles immersed in a fluid electrolyte. We develop a mathematical framework based on the solution of the nonlinear Poisson-Boltzmann equation to obtai...We consider the problem of measuring the electric charge of nanoparticles immersed in a fluid electrolyte. We develop a mathematical framework based on the solution of the nonlinear Poisson-Boltzmann equation to obtain interaction forces between nanoparticles immersed in a fluid electrolyte and an Atomic Force Microscopy micro spherical probe. This force-separation information is shown explicitly to depend on the charge of the nanoparticle.? This method overcomes the statistical nature of extant methods and renders a charge value for an individual single nanoparticle.展开更多
The aim of this paper is to study the asymptotic behavior of the oscillatory solutions of forced nonlinear neutral equations of the form[x(t)-∑mi=1p i(t)x(t-τ i)]′+∑nj=1q j(t)f(x(t-σ j))=r(t),t≥t 0,where p i,q ...The aim of this paper is to study the asymptotic behavior of the oscillatory solutions of forced nonlinear neutral equations of the form[x(t)-∑mi=1p i(t)x(t-τ i)]′+∑nj=1q j(t)f(x(t-σ j))=r(t),t≥t 0,where p i,q j,r∈C([t 0,∞),R),τ i,σ j≥0,i=1,2,…,m,j=1,2,…,n,f∈C(R,R),xf(x)>0 for x≠0. The results obtained here extend and improve some of the results of Ladas and Sficas [3] and J.R.Yan [5].展开更多
文摘This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.
基金supported by the EPSRC (UK)the National Science Fund for Distinguished Young Scholars (11125209)the National Natural Science Foundation of China (10902068 and 51121063)
文摘In the present study, the Volterra series theory is adopted to theoretically investigate the force transmissibility of multiple degrees of freedom (MDOF) structures, in which an isolator with nonlinear anti-symmetric viscous damping is assembled. The results reveal that the anti-symmetric nonlinear viscous damping can significantly reduce the force trans- missibility over all resonance regions for MDOF structures with little effect on the transmissibility over non-resonant and isolation regions. The results indicate that the vibration isolators with an anti-symmetric damping characteristic have great potential to solve the dilemma occurring in the design of linear viscously damped vibration isolators where an increase of the damping level reduces the force transmissibility over resonant frequencies but increases the transmissibility over non-resonant frequency regions. This work is an extension of a previous study in which MDOF structures installed on the mount through an isolator with cubic nonlinear damping are considered. The theoretical analysis results are also verified by simulation studies.
基金supported by the National Natural Science Foundation of China (Grant Nos.11002093,11072065,and 10872136)the Science Foundation of the Science and Technology Department of Hebei Province of China (Grant No.11215643)
文摘Nonlinear dynamical systems with an irrational restoring force often occur in both science and engineering, and always lead to a barrier for conventional nonlinear techniques. In this paper, we have investigated the global bifurcations and the chaos directly for a nonlinear system with irrational nonlinearity avoiding the conventional Taylor's expansion to retain the natural characteristics of the system. A series of transformations are proposed to convert the homoclinic orbits of the unperturbed system to the heteroclinic orbits in the new coordinate, which can be transformed back to the analytical expressions of the homoclinic orbits. Melnikov's method is employed to obtain the criteria for chaotic motion, which implies that the existence of homoclinic orbits to chaos arose from the breaking of homoclinic orbits under the perturbation of damping and external forcing. The efficiency of the criteria for chaotic motion obtained in this paper is verified via bifurcation diagrams, Lyapunov exponents, and numerical simulations. It is worthwhile noting that our study is an attempt to make a step toward the solution of the problem proposed by Cao Q J et al. (Cao Q J, Wiercigroch M, Pavlovskaia E E, Thompson J M T and Grebogi C 2008 Phil. Trans. R. Soe. A 366 635).
基金The work described in this paper was jointly supported by the National Natural Science Foundation of China (51478360, 51323013, and 50978204).
文摘Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on three typical box decks (i.e., fully closed box, centrally slotted box, and semi-closed box). The mechanisms of the onset, development, and self-limiting phenomenon of the vertical vortex-induced vibration (VlV) were also explored by analyzing the energy evolution of different vertical VIF components and their contributions to the vertical VIV responses. The results show that the nonlinear components of the vertical VIF often differ from deck to deck; the most important components of the vertical VIF, governing the stable amplitudes of the vertical VIV responses, are the linear and cubic components of velocity contained in the self-excited aerodynamic damping forces. The former provides a constant negative damping ratio to the vibration system and is thus the essential power driving the development of the VIV amplitude, while the latter provides a positive damping ratio proportional to the square of the vibration velocity and is actually the inherent factor making the VIV amplitude self-limiting. On these bases, a universal simplified nonlinear mathematical model of the vertical VIF on box decks of bridges is presented and verified in this paper; it can be used to predict the stable amplitudes of the vertical VIV of long-span bridges with satisfactory accuracy.
文摘The max collision force of ship-bridge collision is one of the most importantreferences for bridge design. By mean linear digital simulation method, the collision forces ofthe collisions between rigid bridge pier and ship bow were calculated out for four different ships,whose tonnages are 5 000,10 000,50 000 and 60 000 DWT respectively. Curves of collisionforce-penetration and absorbed energy-penetration are obtained, and the data of the max loads arethen summarized. On the basis of these curves and data, a set of curves describing therelationships between max collision forces and tonnages of the ships are successfully presented, bywhich the max collision forces of the ships-bridge with different tonnages and in differentvelocities can be estimated easily and reliably.
文摘The effect of oil film force nonlinearity on unbalance response of Jeffcot rotor elliptical bearing system is studied. Linear analysis is done by linearizing the bearing oil film dynamic forces and expressing them with stiffness and damping constants. Nonlinear dynamic simulation is done by taking the nonlinearity of bearing oil film dynamic force into full consideration, with the latter being expressed by a special database which is generated beforehand, and based on non stationary Reynolds equation and Reynolds boundary condition of film rupture. The linear and nonlinear unbalance responses of a Jeffcot rotor supported on a pair of elliptical bearings is studied. The resulting dynamic characteristics and rotor and journal whirling orbits are compared. While good consistancy between nonlinear and linear predictions is found under very small unbalance, significant or even drastic differences are found whenever the unbalance is not small, indicating the necessity of including the nonlinearity of oil film dynamic forces, especially when response to large unbalance is to be predicted.
基金the National Outstanding Youth Scientist Foundation of China (GrantNo. 49825109), the Key Innovation Project of Chinese Academ
文摘The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the forced dissipative nonlinear atmospheric equations is obtained on account of the concept of computational quasi-stability, Therefore, it provides the new train of thought and theoretical basis for designing computational stable difference scheme of the forced dissipative nonlinear atmospheric equations. Key words Computational quasi-stability - Computational stability - Forced dissipative nonlinear evolution equation - Explicit difference scheme This work was supported by the National Outstanding Youth Scientist Foundation of China (Grant No. 49825109), the Key Innovation Project of Chinese Academy of Sciences (KZCX1-10-07), the National Natural Science Foundation of China (Grant Nos, 49905007 and 49975020) and the Outstanding State Key Laboratory Project (Grant No. 40023001).
基金supported by the National Science Fund for Distinguished Young Scholars (11125209)the National Natural Science Foundation of China (10732060, 10902068)the EPSRC (UK)
文摘In the present study, the concept of the output frequency response function is applied to theoretically investigate the force transmissibility of multi-degree of freedom (MDOF) structures with a nonlinear anti-symmetric viscous damping. The results reveal that an anti-symmetric nonlinear viscous damping can significantly reduce the transmissibility over all resonance regions for MDOF structures while it has almost no effect on the transmissibility over non-resonant and isolation regions. The results indicate that the vibration isolators with an anti-symmetric damping characteristic have great potential to overcome the dilemma in the design of linear viscously damped vibration isolators where an increase of the damping level reduces the force transmissibility over resonant region but increases the transmissibility over non-resonant regions.
基金the Outstanding State Key Laboratory Project of National Science Foundation of China (Grant No. 40023001 )the Key Innovatio
文摘Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmospheric and oceanic equations is analyzed and the computationally stable explicit complete square conservative difference schemes are constructed. The theoretical analysis and numerical experiment prove that the explicit complete square conservative difference schemes are computationally stable and deserve to be disseminated.
基金supported by the National Natural Science Foundation of China (Grants 11402126, 11502122, and 11290152)the Scientific Research Foundation of the Inner Mongolia University of Technology (Grant ZD201410)
文摘Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, under the combined action of aerodynamic load and piezoelectric excitation, is introduced. Two-degree of freedom(DOF)nonlinear dynamic models for the time-varying coefficients describing the transverse vibration of the deploying laminate under the combined actions of a first-order aerodynamic force and piezoelectric excitation were obtained by selecting a suitable time-dependent modal function satisfying the displacement boundary conditions and applying second-order discretization using the Galerkin method. Using a numerical method, the time history curves of the deploying laminate were obtained, and its nonlinear dynamic characteristics,including extension speed and different piezoelectric excitations, were studied. The results suggest that the piezoelectric excitation has a clear effect on the change of the nonlinear dynamic characteristics of such piezoelectric laminated composite plates. The nonlinear vibration of the deploying cantilevered laminate can be effectively suppressed by choosing a suitable voltage and polarity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374108 and 11775083)。
文摘We study the abruptly autofocusing and autodefocusing properties of the circular Airy Gaussian vortex(CAi GV)beams in strongly nonlocal nonlinear medium for the first time through numerical simulations.The magnitude of topological charges and the position of the vortex could change not only the light spot pattern but also the intensity contrast.Meanwhile,we can change the position of the autofocusing and autodefocusing planes by changing the parameter of the incident beam.Furthermore,we can control the peak intensity contrast through choosing properly the truncation factor.As for the radiation force,we study the gradient and the scattering forces of CAi GV beams on Rayleigh dielectric sphere.Our analyses demonstrate that the radiation force can be enhanced by choosing proper parameters of CAi GV beams.
文摘The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation of the characteristic drag forces. Numerical computation is also performed for the investigation of the effects of nonlinearity of the drag forces. The results indicate that the wave drag forces calculated by linear wave theory are larger than those calculated by the third order Stokes wave theory for given waves. The difference between them increases with wave height. The wave drag forces calculated by use of linear approximation are about 5% smaller than their actual values when measured in the peak values of spectral densities. This will result in a safety problem for the design of offshore structures. Therefore, the nonlinear effect of wave drag forces should be taken into consideration in design and application of important offshore structures.
基金Project supported by the State Key Program of National Natural Science Foundation of China(No.11232009)the National Natural Science Foundation of China(No.11572182)
文摘The primary resonances of a quadratic nonlinear system under weak and strong external excitations are investigated with the emphasis on the comparison of dif- ferent analytical approximate approaches. The forced vibration of snap-through mecha- nism is treated as a quadratic nonlinear oscillator. The Lindstedt-Poincar method, the multiple-scale method, the averaging method, and the harmonic balance method are used to determine the amplitude-frequency response relationships of the steady-state responses. It is demonstrated that the zeroth-order harmonic components should be accounted in the application of the harmonic balance method. The analytical approximations are com- pared with the numerical integrations in terms of the frequency response curves and the phase portraits. Supported by the numerical results, the harmonic balance method pre- dicts that the quadratic nonlinearity bends the frequency response curves to the left. If the excitation amplitude is a second-order small quantity of the bookkeeping parameter, the steady-state responses predicted by the second-order approximation of the Lindstedt- Poincar method and the multiple-scale method agree qualitatively with the numerical results. It is demonstrated that the quadratic nonlinear system implies softening type nonlinearity for any quadratic nonlinear coefficients.
文摘The discovery of the essential difference of maximum ion energy for TW-pslaser plasma interaction compared with, the 100 ns laser pulses led to the theory of a skin layermodel where the control of prepulses suppressed the usual relativistic self-focusing. The subsequentgeneration of two nonlinear force driven blocks has been demonstrated experimentally and inextensive numerical studies where one block moves against the laser light and the other block intothe irradiated target. These blocks of nearly solid state density DT plasma correspond to ion beamcurrent densities exceeding 10^(10) A/cm^2 where the ion velocity can be chosen up to highlyrelativistic values. Using the results of the expected ignition of DT fuel by light ion beams, aself-sustained fusion reaction front may be generated even into uncompressed solid DT fuel similarto the Nuckolls-Wood scheme where 10 kJ laser pulses produce 100 MJ fusion energy. This new andsimplified scheme of laser-ICF needs and optimisation of the involved parameters.
文摘A fundamental difference of very high intensity laser interaction with plasmas from solid targets appears with lasing at picosecond (ps) pulse durations in contrast to pulses of nanosec-onds (ns). This can be seen from the more than 10,000 times higher acceleration with ps pulse du-rations than with thermal pressure determined interaction. A ps pulse duration produces instantly acting high-efficiency nonlinear (ponderomotive) electrodynamic force dominated acceleration in contrast to heating with longer pulses. The ps pulses accelerate high-density plasma blocks. This can be used by a new scheme of side-on driven laser fusion with generating a flame ignition in uncompressed fusion fuel of solid density resulting in a reaction velocity of more than 2000 km/s for DT.
文摘By introducing nonlinear frequency, using Floquet theory and referring to the characteristics of the solution when it passes through the transition boundaries, all kinds of bifurcation modes and their transition boundaries of Duffing equation with two periodic excitations as well as the possible ways to chaos are studied in this paper.
文摘In addition to the matured "Laser Inertial Fusion Energy (LIFE)" with spherical compression of deuterium-tritium (DI) for a pure fusion engine or for fusion-fission-hybrid operation, a very new scheme may have now been opened by igniting the neutron-free reaction of proton-boron-11 (p-^11B) using side-on block ignition. Laser pulses of several petawatt power and ps duration led to thc discovery of an anomaly of interaction, if the prepulses are cut off by a factor 108 (contrast ratio) to avoid relativistic self focusing. In this case the Bobin-Chu conditions of side-on ignition of solid fusion fuel can be applied after several improvements leading to energy gains of 10,000 similar to the Nuckolls-Wood ignition with extremely intense 5 MeV electron beams. In contrast to the impossible laser-ignition of p-^11B by the usual spherical compression, the side-on ignition is less than ten times only more difficult of DT ignition. This p-^11B fusion produces less radioactivity per gained energy than burning coal. After encouraging success with computations based on the different nuclear cross sections, next steps are focusing on stability and transport problems.
基金This work was financially supported by the National United University[grant numbers 111-NUUPRJ-04].
文摘We retrieve unknown nonlinear large space-time dependent forces burdened with the vibrating nonlinear Euler-Bernoulli beams under varied boundary data,comprising two-end fixed,cantilevered,clamped-hinged,and simply supported conditions in this study.Even though some researchers used several schemes to overcome these forward problems of Euler-Bernoulli beams;however,an effective numerical algorithm to solve these inverse problems is still not available.We cope with the homogeneous boundary conditions,initial data,and final time datum for each type of nonlinear beam by employing a variety of boundary shape functions.The unknown nonlinear large external force can be recuperated via back-substitution of the solution into the nonlinear Euler-Bernoulli beam equation when we acquire the solution by utilizing the boundary shape function scheme and deal with a smallscale linear system to gratify an additional right-side boundary data.For the robustness and accuracy,we reveal that the current schemes are substantiated by comparing the recuperated numerical results of four instances to the exact forces,even though a large level of noise up to 50%is burdened with the overspecified conditions.The current method can be employed in the online real-time computation of unknown force functions in space-time for varied boundary supports of the vibrating nonlinear beam.
文摘We consider the problem of measuring the electric charge of nanoparticles immersed in a fluid electrolyte. We develop a mathematical framework based on the solution of the nonlinear Poisson-Boltzmann equation to obtain interaction forces between nanoparticles immersed in a fluid electrolyte and an Atomic Force Microscopy micro spherical probe. This force-separation information is shown explicitly to depend on the charge of the nanoparticle.? This method overcomes the statistical nature of extant methods and renders a charge value for an individual single nanoparticle.
文摘The aim of this paper is to study the asymptotic behavior of the oscillatory solutions of forced nonlinear neutral equations of the form[x(t)-∑mi=1p i(t)x(t-τ i)]′+∑nj=1q j(t)f(x(t-σ j))=r(t),t≥t 0,where p i,q j,r∈C([t 0,∞),R),τ i,σ j≥0,i=1,2,…,m,j=1,2,…,n,f∈C(R,R),xf(x)>0 for x≠0. The results obtained here extend and improve some of the results of Ladas and Sficas [3] and J.R.Yan [5].