期刊文献+
共找到9,842篇文章
< 1 2 250 >
每页显示 20 50 100
Spectral Method for Three-Dimensional Nonlinear Klein-Gordon Equation by Using Generalized Laguerre and Spherical Harmonic Functions 被引量:3
1
作者 Xiao-Yong Zhang Ben-Yu Guo Yu-Jian Jiao 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2009年第1期43-64,共22页
In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve ... In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry. 展开更多
关键词 Generalized Laguerre-spherical harmonic spectral method Cauchy problem of nonlinear klein-gordon equation.
下载PDF
New Doubly Periodic Solutions for the Coupled Nonlinear Klein-Gordon Equations
2
作者 LIUChun-Ping 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第1期13-16,共4页
By using the general solutions of a new coupled Riccati equations, a direct algebraic method is described to construct doubly periodic solutions (Jacobi elliptic function solution) for the coupled nonlinear Klein-Gord... By using the general solutions of a new coupled Riccati equations, a direct algebraic method is described to construct doubly periodic solutions (Jacobi elliptic function solution) for the coupled nonlinear Klein-Gordon equations.It is shown that more doubly periodic solutions and the corresponding solitary wave solutions and trigonometric function solutions can be obtained in a unified way by this method. 展开更多
关键词 nonlinear klein-gordon equation coupled riccati equations doubly periodicsolution algebraic method
下载PDF
A New Algebraic Method and Its Application to Nonlinear Klein-Gordon Equation
3
作者 GONG Lun-Xun PAN Jun-Ting 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第12期1276-1278,共3页
In terms of the solutions of the generalized Riccati equation,a new algebraic method,which contains theterms of radical expression of functions f(ξ),is constructed to explore the new exact solutions for nonlinear evo... In terms of the solutions of the generalized Riccati equation,a new algebraic method,which contains theterms of radical expression of functions f(ξ),is constructed to explore the new exact solutions for nonlinear evolutionequations.Being concise and straightforward,the method is applied to nonlinear Klein Gordon equation,and some newexact solutions of the system are obtained.The method is of important significance in exploring exact solutions for othernonlinear evolution equations. 展开更多
关键词 generalized Riccati equation travelling wave solutions nonlinear klein-gordon equation exactsolution
下载PDF
Numerical Solution of Nonlinear Klein-Gordon Equation Using Lattice Boltzmann Method 被引量:1
4
作者 Qiaojie Li Zong Ji +1 位作者 Zhoushun Zheng Hongjuan Liu 《Applied Mathematics》 2011年第12期1479-1485,共7页
In this paper, in order to extend the lattice Boltzmann method to deal with more nonlinear equations, a one-dimensional (1D) lattice Boltzmann scheme with an amending function for the nonlinear Klein-Gordon equation i... In this paper, in order to extend the lattice Boltzmann method to deal with more nonlinear equations, a one-dimensional (1D) lattice Boltzmann scheme with an amending function for the nonlinear Klein-Gordon equation is proposed. With the Taylor and Chapman-Enskog expansion, the nonlinear Klein-Gordon equation is recovered correctly from the lattice Boltzmann equation. The method is applied on some test examples, and the numerical results have been compared with the analytical solutions or the numerical solutions reported in previous studies. The L2, L∞ and Root-Mean-Square (RMS) errors in the solutions show the efficiency of the method computationally. 展开更多
关键词 LATTICE BOLTZMANN Chapman-Enskog EXPANSION nonlinear klein-gordon equation
下载PDF
A FOURIER SPECTRAL SCHEME FOR SOLVING NONLINEAR KLEIN-GORDON EQUATION 被引量:1
5
作者 郭本瑜 曹卫明 +1 位作者 Tahira N.Buttar 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1993年第1期38-56,共19页
A Fourier spectral scheme is proposed for solving the periodic problem of nonlinear Klein-Gordon equation. Its stability and convergence are investigated. Numerical results are also presented.
关键词 FOURIER SPECTRAL SCHEME klein-gordon equation.
下载PDF
Legendre Rational Spectral Method for Nonlinear Klein-Gordon Equation 被引量:3
6
作者 Zhongqing Wang Benyu Guo 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2006年第2期143-149,共7页
A Legendre rational spectral method is proposed for the nonlinear Klein-Gordon equation on the whole line. Its stability and convergence are proved. Numerical results coincides well with the theoretical analysis and d... A Legendre rational spectral method is proposed for the nonlinear Klein-Gordon equation on the whole line. Its stability and convergence are proved. Numerical results coincides well with the theoretical analysis and demonstrate the e?ciency of this approach. 展开更多
关键词 勒让德有理数光谱方法 非线性方程 克莱因-戈登方程 收敛 稳定性
下载PDF
New exact solutions of nonlinear Klein-Gordon equation 被引量:4
7
作者 郑强 岳萍 龚伦训 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第1期35-38,共4页
New exact solutions, expressed in terms of the Jacobi elliptic functions, to the nonlinear Klein-Gordon equation are obtained by using a modified mapping method. The solutions include the conditions for equation's pa... New exact solutions, expressed in terms of the Jacobi elliptic functions, to the nonlinear Klein-Gordon equation are obtained by using a modified mapping method. The solutions include the conditions for equation's parameters and travelling wave transformation parameters. Some figures for a specific kind of solution are also presented. 展开更多
关键词 nonlinear klein-gordon equation Jacobi elliptic functions modified mapping method travelling wave solution
下载PDF
A LEGENDRE PSEUDOSPECTRAL METHOD FOR SOLVINGNONLINEAR KLEIN-GORDON EQUATION 被引量:3
8
作者 Li, X Guo, BY 《Journal of Computational Mathematics》 SCIE CSCD 1997年第2期105-126,共22页
A Legendre pseudospectral scheme is proposed for solving initial-boundary value problem of nonlinear Klein-Gordon equation. The numerical solution keeps the discrete conservation. Its stability and convergence are inv... A Legendre pseudospectral scheme is proposed for solving initial-boundary value problem of nonlinear Klein-Gordon equation. The numerical solution keeps the discrete conservation. Its stability and convergence are investigated. Numerical results are also presented, which show the high accuracy. The technique in the theoretical analysis provides a framework for Legendre pseudospectral approximation of nonlinear multi-dimensional problems. 展开更多
关键词 MATH A LEGENDRE PSEUDOSPECTRAL METHOD FOR SOLVINGnonlinear klein-gordon equation
原文传递
Stability of the Standing Waves for a Class of Coupled Nonlinear Klein-Gordon Equations
9
作者 Jian Zhang Zai-hui Gan Bo-ling Guo 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2010年第3期427-442,共16页
This paper deals with the standing waves for a class of coupled nonlinear Klein-Gordon equations with space dimension N ≥ 3, 0 〈 p, q 〈 2/N-2 and p + q 〈 4/N. By using the variational calculus and scaling argumen... This paper deals with the standing waves for a class of coupled nonlinear Klein-Gordon equations with space dimension N ≥ 3, 0 〈 p, q 〈 2/N-2 and p + q 〈 4/N. By using the variational calculus and scaling argument, we establish the existence of standing waves with ground state, discuss the behavior of standing waves as a function of the frequency ω and give the sufficient conditions of the stability of the standing waves with the least energy for the equations under study. 展开更多
关键词 Coupled nonlinear klein-gordon equations STABILITY Standing wave Variational calculus
原文传递
Soliton solution to generalized nonlinear disturbed Klein-Gordon equation
10
作者 莫嘉琪 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第12期1577-1584,共8页
A generalized nonlinear disturbed Klein-Gordon equation is studied. Using the homotopic mapping method, the corresponding homotopic mapping is constructed. A suitable initial approximation is selected, and an arbitrar... A generalized nonlinear disturbed Klein-Gordon equation is studied. Using the homotopic mapping method, the corresponding homotopic mapping is constructed. A suitable initial approximation is selected, and an arbitrary-order approximate solution to the soliton is calculated: A weakly disturbed equation is also studied. 展开更多
关键词 nonlinear klein-gordon equation SOLITON approximate method
下载PDF
Operational Solution to the Nonlinear Klein-Gordon Equation
11
作者 G.Bengochea L.Verde-Star M.Ortigueira 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第5期506-512,共7页
We obtain solutions of the nonlinear Klein-Gordon equation using a novel operational method combined with the Adomian polynomial expansion of nonlinear functions. Our operational method does not use any integral trans... We obtain solutions of the nonlinear Klein-Gordon equation using a novel operational method combined with the Adomian polynomial expansion of nonlinear functions. Our operational method does not use any integral transforms nor integration processes. We illustrate the application of our method by solving several examples and present numerical results that show the accuracy of the truncated series approximations to the solutions. 展开更多
关键词 operational calculus partial differential equations nonlinear klein-gordon equation
原文传递
THE EXACT MEROMORPHIC SOLUTIONS OF SOME NONLINEAR DIFFERENTIAL EQUATIONS
12
作者 刘慧芳 毛志强 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期103-114,共12页
We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Co... We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions. 展开更多
关键词 Nevanlinna theory nonlinear differential equations meromorphic functions entire functions
下载PDF
THE ASYMPTOTIC BEHAVIOR AND OSCILLATION FOR A CLASS OF THIRD-ORDER NONLINEAR DELAY DYNAMIC EQUATIONS
13
作者 黄先勇 邓勋环 王其如 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期925-946,共22页
In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existe... In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results. 展开更多
关键词 nonlinear delay dynamic equations NONOSCILLATION asymptotic behavior Philostype oscillation criteria generalized Riccati transformation
下载PDF
Dynamics of fundamental and double-pole breathers and solitons for a nonlinear Schrodinger equation with sextic operator under non-zero boundary conditions
14
作者 Luyao Zhang Xiyang Xie 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期268-280,共13页
We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis main... We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons. 展开更多
关键词 double-pole solitons double-pole breathers Riemann-Hilbert problem non-zero boundary con-ditions nonlinear Schrodinger equation with sextic operator
下载PDF
Bifurcations, Analytical and Non-Analytical Traveling Wave Solutions of (2 + 1)-Dimensional Nonlinear Dispersive Boussinesq Equation
15
作者 Dahe Feng Jibin Li Airen Zhou 《Applied Mathematics》 2024年第8期543-567,共25页
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ... For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation. 展开更多
关键词 (2 + 1)-Dimensional nonlinear Dispersive Boussinesq equation BIFURCATIONS Phase Portrait Analytical Periodic Wave Solution Periodic Cusp Wave Solution
下载PDF
On Two Types of Stability of Solutions to a Pair of Damped Coupled Nonlinear Evolution Equations
16
作者 Mark Jones 《Advances in Pure Mathematics》 2024年第5期354-366,共13页
The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid... The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense. 展开更多
关键词 nonlinear Schrödinger equation STABILITY Capillary-Gravity Waves
下载PDF
A Comparative Study of Adomian Decomposition Method with Variational Iteration Method for Solving Linear and Nonlinear Differential Equations
17
作者 Sarah Khaled Al Baghdadi N. Ameer Ahammad 《Journal of Applied Mathematics and Physics》 2024年第8期2789-2819,共31页
This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dyna... This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering. 展开更多
关键词 Differential equations Numerical Analysis Mathematical Computing Engineering Models nonlinear Dynamics
下载PDF
Crank-Nicolson Quasi-Compact Scheme for the Nonlinear Two-Sided Spatial Fractional Advection-Diffusion Equations
18
作者 Dechao Gao Zeshan Qiu +1 位作者 Lizan Wang Jianxin Li 《Journal of Applied Mathematics and Physics》 2024年第4期1089-1100,共12页
The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference oper... The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective. 展开更多
关键词 Crank-Nicolson Quasi-Compact Scheme Fractional Advection-Diffusion equations nonlinear Stability and Convergence
下载PDF
Existence and Stability of Standing Waves for the Nonlinear Schrödinger Equation with Combined Nonlinearities and a Partial Harmonic Potential
19
作者 Wei Wang 《Journal of Applied Mathematics and Physics》 2024年第5期1606-1615,共10页
In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercriti... In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential. 展开更多
关键词 nonlinear Schrödinger equation Orbital Stability Standing Waves
下载PDF
Stability of Standing Waves for the Nonlinear Schrödinger Equation with Mixed Power-Type and Hartree-Type Nonlinearities
20
作者 Chunyang Yan 《Journal of Applied Mathematics and Physics》 2024年第10期3439-3457,共19页
This paper studies the existence of stable standing waves for the nonlinear Schrödinger equation with Hartree-type nonlinearity i∂tψ+Δψ+| ψ |pψ+(| x |−γ∗| ψ |2)ψ=0,   (t,x)∈[ 0,T )×ℝN.Where ψ=ψ(t,... This paper studies the existence of stable standing waves for the nonlinear Schrödinger equation with Hartree-type nonlinearity i∂tψ+Δψ+| ψ |pψ+(| x |−γ∗| ψ |2)ψ=0,   (t,x)∈[ 0,T )×ℝN.Where ψ=ψ(t,x)is a complex valued function of (t,x)∈ℝ+×ℝN. The parameters N≥3, 0p4Nand 0γmin{ 4,N }. By using the variational methods and concentration compactness principle, we prove the orbital stability of standing waves. 展开更多
关键词 nonlinear Schrödinger equation Concentration Compactness Principle Orbital Stability
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部