期刊文献+
共找到125篇文章
< 1 2 7 >
每页显示 20 50 100
Dynamics of fundamental and double-pole breathers and solitons for a nonlinear Schrodinger equation with sextic operator under non-zero boundary conditions
1
作者 Luyao Zhang Xiyang Xie 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期268-280,共13页
We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis main... We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons. 展开更多
关键词 double-pole solitons double-pole breathers Riemann-Hilbert problem non-zero boundary con-ditions nonlinear schrodinger equation with sextic operator
下载PDF
Rogue Waves in the(2+1)-Dimensional Nonlinear Schrodinger Equation with a Parity-Time-Symmetric Potential 被引量:1
2
作者 刘芸恺 李彪 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第1期6-9,共4页
The (2+1)-dimension nonlocal nonlinear Schrödinger (NLS) equation with the self-induced parity-time symmetric potential is introduced, which provides spatially two-dimensional analogues of the nonlocal NLS equati... The (2+1)-dimension nonlocal nonlinear Schrödinger (NLS) equation with the self-induced parity-time symmetric potential is introduced, which provides spatially two-dimensional analogues of the nonlocal NLS equation introduced by Ablowitz et al. [Phys. Rev. Lett. 110 (2013) 064105]. General periodic solutions are derived by the bilinear method. These periodic solutions behave as growing and decaying periodic line waves arising from the constant background and decaying back to the constant background again. By taking long wave limits of the obtained periodic solutions, rogue waves are obtained. It is also shown that these line rogue waves arise from the constant background with a line profile and disappear into the constant background again in the plane. 展开更多
关键词 NLS Dimensional nonlinear schrodinger equation with a Parity-Time-Symmetric Potential Rogue waves in the
下载PDF
Energy decay for a class of nonlinear wave equations with a critical potential type of damping
3
作者 王玉珍 石佩虎 《Journal of Southeast University(English Edition)》 EI CAS 2010年第4期651-654,共4页
The Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│)-1 and a nonlinearity │u│p-1u is studied.The total energy decay estimates of the global solutions a... The Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│)-1 and a nonlinearity │u│p-1u is studied.The total energy decay estimates of the global solutions are obtained by using multiplier techniques to establish identity ddtE(t)+F(t)=0 and skillfully selecting f(t),g(t),h(t)when the initial data have a compact support.Using the similar method,the Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│+t)-1 and a nonlinearity │u│p-1u is studied,similar solutions are obtained when the initial data have a compact support. 展开更多
关键词 nonlinear wave equation energy decay critical potential type nonlinear damping self-conjugate operator
下载PDF
Nonautonomous solitons in the continuous wave background of the variable-coefficient higher-order nonlinear Schrodinger equation
4
作者 戴朝卿 陈未路 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期143-146,共4页
We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical ... We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical soliton solutions embedded in the continuous wave background for the VCHNLSE. Then the excitation in advancement and sustainment of soliton arrays, and postponed disappearance and sustainment of the bright soliton embedded in the background are discussed in an exponential system. 展开更多
关键词 higher-order nonlinear schrodinger equation soliton solution continuous wave background postponed disappearance and sustainment of soliton
下载PDF
A nonlinear Schrodinger equation for gravity waves slowly modulated by linear shear flow
5
作者 Shaofeng Li Juan Chen +1 位作者 Anzhou Cao Jinbao Song 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期215-222,共8页
Assume that a fluid is inviscid, incompressible, and irrotational. A nonlinear Schr?dinger equation(NLSE) describing the evolution of gravity waves in finite water depth is derived using the multiple-scale analysis me... Assume that a fluid is inviscid, incompressible, and irrotational. A nonlinear Schr?dinger equation(NLSE) describing the evolution of gravity waves in finite water depth is derived using the multiple-scale analysis method. The gravity waves are influenced by a linear shear flow, which is composed of a uniform flow and a shear flow with constant vorticity. The modulational instability(MI) of the NLSE is analyzed, and the region of the MI for gravity waves(the necessary condition for existence of freak waves) is identified. In this work, the uniform background flows along or against wave propagation are referred to as down-flow and up-flow, respectively. Uniform up-flow enhances the MI, whereas uniform down-flow reduces it. Positive vorticity enhances the MI, while negative vorticity reduces it. Hence, the influence of positive(negative)vorticity on MI can be balanced out by that of uniform down(up) flow. Furthermore, the Peregrine breather solution of the NLSE is applied to freak waves. Uniform up-flow increases the steepness of the free surface elevation, while uniform down-flow decreases it. Positive vorticity increases the steepness of the free surface elevation, whereas negative vorticity decreases it. 展开更多
关键词 nonlinear schrodinger equation gravity waves linear shear flow modulational instability
下载PDF
INVARIANTS-PRESERVING DU FORT-FRANKEL SCHEMES AND THEIR ANALYSES FOR NONLINEAR SCHRÖDINGER EQUATIONS WITH WAVE OPERATOR
6
作者 Dingwen Deng Zhijun Li 《Journal of Computational Mathematics》 SCIE CSCD 2024年第3期814-850,共37页
Du Fort-Frankel finite difference method(FDM)was firstly proposed for linear diffusion equations with periodic boundary conditions by Du Fort and Frankel in 1953.It is an explicit and unconditionally von Neumann stabl... Du Fort-Frankel finite difference method(FDM)was firstly proposed for linear diffusion equations with periodic boundary conditions by Du Fort and Frankel in 1953.It is an explicit and unconditionally von Neumann stable scheme.However,there has been no research work on numerical solutions of nonlinear Schrödinger equations with wave operator by using Du Fort-Frankel-type finite difference methods(FDMs).In this study,a class of invariants-preserving Du Fort-Frankel-type FDMs are firstly proposed for one-dimensional(1D)and two-dimensional(2D)nonlinear Schrödinger equations with wave operator.By using the discrete energy method,it is shown that their solutions possess the discrete energy and mass conservative laws,and conditionally converge to exact solutions with an order of for ofο(T^(2)+h_(x)^(2)+(T/h_(x))^(2))1D problem and an order ofο(T^(2)+h_(x)^(2)+h_(Y)^(2)+(T/h_(X))^(2)+(T/h_(y))^(2))for 2D problem in H1-norm.Here,τdenotes time-step size,while,hx and hy represent spatial meshsizes in x-and y-directions,respectively.Then,by introducing a stabilized term,a type of stabilized invariants-preserving Du Fort-Frankel-type FDMs are devised.They not only preserve the discrete energies and masses,but also own much better stability than original schemes.Finally,numerical results demonstrate the theoretical analyses. 展开更多
关键词 nonlinear schrodinger equations with wave operator Du Fort-Frankel finite difference methods Discrete energy and mass conservative laws Numerical convergence
原文传递
Exact Solutions for a Higher-Order Nonlinear Schrodinger Equation in Atmospheric Dynamics 被引量:3
7
作者 HUANG Fei TANG Xiao-Yan LOU Sen-Yue 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第3期573-576,共4页
By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ... By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ocean dynamical systems. Our analytical solutions include bright and dark solitary waves, and periodical solutions, which can be used to explain atmospheric phenomena. 展开更多
关键词 higher-order nonlinear schrodinger equation atmospheric dynamics bright solitary wave dark solitary wave
下载PDF
Solitary Wave Solutions of a Generalized Derivative Nonlinear Schrdinger Equation 被引量:1
8
作者 WANG Ming-Liang ZHANG Jin-Liang LI Xiang-Zheng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第7期39-42,共4页
With the aid of a class of nonlinear ordinary differential equation (ODE) and its various positive solutions, four types of exact solutions of the generalized derivative nonlinear Sehrodinger equation (GDNLSE) hav... With the aid of a class of nonlinear ordinary differential equation (ODE) and its various positive solutions, four types of exact solutions of the generalized derivative nonlinear Sehrodinger equation (GDNLSE) have been found out, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal traveling wave solution, provided that the coefficients of GDNLSE satisfy certain constraint conditions. For more general GDNLSE, the similar results are also given. 展开更多
关键词 generalized derivative nonlinear schrodinger equation bell-type solitary wave kink-type solitary wave sinusoidal traveling wave
下载PDF
A Compact Finite Difference Schemes for Solving the Coupled Nonlinear Schrodinger-Boussinesq Equations 被引量:1
9
作者 M. S. Ismail H. A. Ashi 《Applied Mathematics》 2016年第7期605-615,共11页
In this paper we are going to derive two numerical methods for solving the coupled nonlinear Schrodinger-Boussinesq equation. The first method is a nonlinear implicit scheme of second order accuracy in both directions... In this paper we are going to derive two numerical methods for solving the coupled nonlinear Schrodinger-Boussinesq equation. The first method is a nonlinear implicit scheme of second order accuracy in both directions time and space;the scheme is unconditionally stable. The second scheme is a nonlinear implicit scheme of second order accuracy in time and fourth order accuracy in space direction. A generalized method is also derived where the previous schemes can be obtained by some special values of l. The proposed methods will produced a coupled nonlinear tridiagonal system which can be solved by fixed point method. The exact solutions and the conserved quantities for two different tests are used to display the robustness of the proposed schemes. 展开更多
关键词 Coupled nonlinear schrodinger-Boussinesq equation Conserved Quantities SOLITON Plane wave Solution Fixed Point Method
下载PDF
Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
10
作者 Ying Yang Yu-Xiao Gao Hong-Wei Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期151-169,共19页
The research of rogue waves is an advanced field which has important practical and theoretical significances in mathematics,physics,biological fluid mechanics,oceanography,etc.Using the reductive perturbation theory a... The research of rogue waves is an advanced field which has important practical and theoretical significances in mathematics,physics,biological fluid mechanics,oceanography,etc.Using the reductive perturbation theory and long wave approximation,the equations governing the movement of blood vessel walls and the flow of blood are transformed into high-order nonlinear Schrodinger(NLS)equations with variable coefficients.The third-order nonlinear Schrodinger equation is degenerated into a completely integrable Sasa–Satsuma equation(SSE)whose solutions can be used to approximately simulate the real rogue waves in the vessels.For the first time,we discuss the conditions for generating rogue waves in the blood vessels and effects of some physiological parameters on the rogue waves.Based on the traveling wave solutions of the fourth-order nonlinear Schrodinger equation,we analyze the effects of the higher order terms and the initial deformations of the blood vessel on the wave propagation and the displacement of the tube wall.Our results reveal that the amplitude of the rogue waves are proportional to the initial stretching ratio of the tube.The high-order nonlinear and dispersion terms lead to the distortion of the wave,while the initial deformation of the tube wall will influence the wave amplitude and wave steepness. 展开更多
关键词 rogue wave variable-coefficients high-order nonlinear schrodinger equation deformable blood vessels Sasa-Satsuma equation
下载PDF
The Interaction and Degeneracy of Mixed Solutions for Derivative Nonlinear Schrodinger Equation
11
作者 Zhen Wu Shuwei Xu +1 位作者 Tingwang Wu Haoqi Zhou 《Journal of Applied Mathematics and Physics》 2019年第11期2650-2657,共8页
The mixed solutions of the derivative nonlinear Schr&#246;dinger equation from the trivial seed (zero solution) are derived by using the determinant representation. By adjusting the interaction and degeneracy of m... The mixed solutions of the derivative nonlinear Schr&#246;dinger equation from the trivial seed (zero solution) are derived by using the determinant representation. By adjusting the interaction and degeneracy of mixed solutions, it is possible to obtain different types of solutions: phase solutions, breather solutions, phase-breather solutions and rogue waves. 展开更多
关键词 Derivative nonlinear schrodinger equation Mixed Solutions Phase Solutions Breather Solutions Rogue waves
下载PDF
Relativistic Schrodinger Wave Equation for Hydrogen Atom Using Factorization Method
12
作者 Mohammad Reza Pahlavani Hossein Rahbar Mohsen Ghezelbash 《Open Journal of Microphysics》 2013年第1期1-7,共7页
In this investigation a simple method developed by introducing spin to Schrodinger equation to study the relativistic hydrogen atom. By separating Schrodinger equation to radial and angular parts, we modify these part... In this investigation a simple method developed by introducing spin to Schrodinger equation to study the relativistic hydrogen atom. By separating Schrodinger equation to radial and angular parts, we modify these parts to the associated Laguerre and Jacobi differential equations, respectively. Bound state Energy levels and wave functions of relativistic Schrodinger equation for Hydrogen atom have been obtained. Calculated results well matched to the results of Dirac’s relativistic theory. Finally the factorization method and supersymmetry approaches in quantum mechanics, give us some first order raising and lowering operators, which help us to obtain all quantum states and energy levels for different values of the quantum numbers n and m. 展开更多
关键词 Relativistic schrodinger wave equation Factorization Method Ladder operators SUPERSYMMETRY SPIN
下载PDF
Rogue wave solutions and rogue-breather solutions to the focusing nonlinear Schr?dinger equation
13
作者 Si-Jia Chen Xing Lü 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第3期33-41,共9页
Based on the long wave limit method,the general form of the second-order and third-order rogue wave solutions to the focusing nonlinear Schr?dinger equation are given by introducing some arbitrary parameters.The inter... Based on the long wave limit method,the general form of the second-order and third-order rogue wave solutions to the focusing nonlinear Schr?dinger equation are given by introducing some arbitrary parameters.The interaction solutions between the first-order rogue wave and one-breather wave are constructed by taking a long wave limit on the two-breather solutions.By applying the same method to the three-breather solutions,two types of interaction solutions are obtained,namely the first-order rogue wave and two breather waves,the second-order rogue wave and one-breather wave,respectively.The influence of the parameters related to the phase on the interaction phenomena is graphically demonstrated.Collisions occur among the rogue waves and breather waves.After the collisions,the shape of them remains unchanged.The abundant interaction phenomena in this paper will contribute to a better understanding of the propagation and control of nonlinear waves. 展开更多
关键词 nonlinear schrodinger equation rogue wave solutions interaction solutions
原文传递
Dynamics of three nonisospectral nonlinear Schrdinger equations 被引量:1
14
作者 Abdselam Silem Cheng Zhang Da-Jun Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第2期82-93,共12页
Dynamics of three nonisospectral nonlinear Schrdinger equations(NNLSEs), following different time dependencies of the spectral parameter, are investigated. First, we discuss the gauge transformations between the stand... Dynamics of three nonisospectral nonlinear Schrdinger equations(NNLSEs), following different time dependencies of the spectral parameter, are investigated. First, we discuss the gauge transformations between the standard nonlinear Schrdinger equation(NLSE) and its first two nonisospectral counterparts, for which we derive solutions and infinitely many conserved quantities. Then, exact solutions of the three NNLSEs are derived in double Wronskian terms. Moreover,we analyze the dynamics of the solitons in the presence of the nonisospectral effects by demonstrating how the shapes,velocities, and wave energies change in time. In particular, we obtain a rogue wave type of soliton solutions to the third NNLSE. 展开更多
关键词 nonisospectral nonlinear schrodinger equations gauge transformations bilinear forms SOLITONS rogue waves
下载PDF
Some exact solutions to the inhomogeneous higher-order nonlinear Schrdinger equation by a direct method
15
作者 张焕萍 李彪 陈勇 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第6期32-38,共7页
By symbolic computation and a direct method, this paper presents some exact analytical solutions of the one-dimensional generalized inhomogeneous higher-order nonlinear Schrodinger equation with variable coefficients,... By symbolic computation and a direct method, this paper presents some exact analytical solutions of the one-dimensional generalized inhomogeneous higher-order nonlinear Schrodinger equation with variable coefficients, which include bright solitons, dark solitons, combined solitary wave solutions, dromions, dispersion-managed solitons, etc. The abundant structure of these solutions are shown by some interesting figures with computer simulation. 展开更多
关键词 inhomogeneous high-order nonlinear schrodinger equation solitary wave solutions symbolic computation
下载PDF
Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides
16
作者 张解放 金美贞 +2 位作者 何纪达 楼吉辉 戴朝卿 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期330-334,共5页
We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schr6dinger equation with varying coefficients. And then the dynamics of the first- and the second-order optica... We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schr6dinger equation with varying coefficients. And then the dynamics of the first- and the second-order optical rogues are investigated. Finally, the controllability of the optical rogue propagating in inhomogeneous nonlinear waveguides is discussed. By properly choosing the distributed coefficients, we demonstrate analytically that rogue waves can be restrained or even be annihilated, or emerge periodically and sustain forever. We also figure out the center-of-mass motion of the rogue waves. 展开更多
关键词 rogue wave (2+ 1)-dimensional nonlinear schrodinger equation inhomogeneous nonlinear waveg-uides
下载PDF
(2+1)-dimensional dissipation nonlinear Schrdinger equatio for envelope Rossby solitary waves and chirp effect
17
作者 李近元 方念乔 +3 位作者 张吉 薛玉龙 王雪木 袁晓博 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期13-21,共9页
In the past few decades, the (1 + 1)-dimensional nonlinear Schr6dinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the de... In the past few decades, the (1 + 1)-dimensional nonlinear Schr6dinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the development of theory, we note that the (1+1)-dimensional model cannot reflect the evolution of envelope Rossby solitary waves in a plane. In this paper, by constructing a new (2+1)-dimensional multiscale transform, we derive the (2+1)-dimensional dissipation nonlinear Schrodinger equation (DNLS) to describe envelope Rossby solitary waves under the influence of dissipation which propagate in a plane. Especially, the previous researches about envelope Rossby solitary waves were established in the zonal area and could not be applied directly to the spherical earth, while we adopt the plane polar coordinate and overcome the problem. By theoretical analyses, the conservation laws of (2+ 1)-dimensional envelope Rossby solitary waves as well as their variation under the influence of dissipation are studied. Finally, the one-soliton and two-soliton solutions of the (2+ 1)-dimensional NLS equation are obtained with the Hirota method. Based on these solutions, by virtue of the chirp concept from fiber soliton communication, the chirp effect of envelope Rossby solitary waves is discussed, and the related impact factors of the chirp effect are given. 展开更多
关键词 (2+1)-dimensional dissipation nonlinear schrodinger equation envelope Rossby solitary waves chirp effect two-soliton solutions
下载PDF
Symbolic Computation of Extended Jacobian Elliptic Function Algorithm for Nonlinear Differential-Different Equations
18
作者 DAIChao-Qing MENGJian-Ping ZHANGJie-Fang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第3期471-478,共8页
The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct m... The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct more new exact doubly-periodic solutions of the integrable discrete nonlinear Schrodinger equation. When the modulous m → 1or 0, doubly-periodic solutions degenerate to solitonic solutions including bright soliton, dark soliton, new solitons as well as trigonometric function solutions. 展开更多
关键词 integrable discrete nonlinear schrodinger equation extended Jacobian elliptic function expansion approach doubly-periodic wave solutions solitonic solutions singly-periodic wave solutions
下载PDF
Closed Form Exact Solutions to the Higher Dimensional Fractional Schrodinger Equation via the Modified Simple Equation Method
19
作者 M. Nurul Islam M. Ali Akbar 《Journal of Applied Mathematics and Physics》 2018年第1期90-102,共13页
In this article, we investigate some exact wave solutions to the higher dimensional time-fractional Schrodinger equation, an important equation in quantum mechanics. The fractional Schrodinger equation further precise... In this article, we investigate some exact wave solutions to the higher dimensional time-fractional Schrodinger equation, an important equation in quantum mechanics. The fractional Schrodinger equation further precisely describes the quantum state of a physical system changes in time. In order to determine the solutions a suitable transformation is considered to transmute the equations into a simpler ordinary differential equation (ODE) namely fractional complex transformation. We then use the modified simple equation (MSE) method to obtain new and further general exact wave solutions. The MSE method is more powerful and can be used in other works to establish completely new solutions for other kind of nonlinear fractional differential equations arising in mathematical physics. The affect of obtaining parameters for its definite values which are examined from the solutions of two dimensional and three dimensional time-fractional Schrodinger equations are discussed and therefore might be useful in different physical applications where the equations arise in this article. 展开更多
关键词 MODIFIED SIMPLE equation (MSE) METHOD FRACTIONAL Differential equation nonlinear Evolution equations Higher Dimensional schrodinger equation Traveling wave Transformation
下载PDF
Standing Waves for Discrete Nonlinear Schrodinger Equations with Nonperiodic Bounded Potentials
20
作者 Tie-shan HE Meng ZHANG +1 位作者 Kai-hao LIANG Peng-fei GUO 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2019年第2期374-385,共12页
In this paper, we investigate standing waves in discrete nonlinear Schr?dinger equations with nonperiodic bounded potentials. By using the critical point theory and the spectral theory of self-adjoint operators, we pr... In this paper, we investigate standing waves in discrete nonlinear Schr?dinger equations with nonperiodic bounded potentials. By using the critical point theory and the spectral theory of self-adjoint operators, we prove the existence and infinitely many sign-changing solutions of the equation. The results on the exponential decay of standing waves are also provided. 展开更多
关键词 Discrete nonlinear schrodinger equation Standing wave Nonperiodic bounded potential Sign-changing solution Critical point theory
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部