针对传统PI应用于静止无功补偿器(static var compen-sator,SVC)这个非线性复杂系统上,所体现出的快速性与稳定性之间的矛盾,以及对精确数学模型的依赖性,适应性及鲁棒性较差,该文设计了以非线性函数与传统PI控制器串联起来构成非线性P...针对传统PI应用于静止无功补偿器(static var compen-sator,SVC)这个非线性复杂系统上,所体现出的快速性与稳定性之间的矛盾,以及对精确数学模型的依赖性,适应性及鲁棒性较差,该文设计了以非线性函数与传统PI控制器串联起来构成非线性PI控制器,简单易于实现。并且提出基于改进的单纯形加速算法(simplex method,SPX),以时间乘以误差绝对值积分(integrate of time multiplied absolute error,ITAE)准则作为寻优目标函数,对非线性PI控制器的参数KP、KI进行实时调整、寻优,使SVC系统的瞬态响应过程达到最佳。仿真和实际应用结果表明该最优非线性PI控制器,不但能快速、无超调的跟踪SVC系统的电压设定值,而且可实现对无功功率、三相不平衡等多个因素的综合补偿,具有较强的鲁棒性、适应性和较高的补偿精度。展开更多
简要分析了静止无功补偿器(Static Var Compensator,SVC)控制系统的组成和补偿原理,提出一种用于SVC控制器的模糊鄄PID双模控制设计方法。该模糊鄄PID控制器综合了模糊和PID两种控制方式的优点,根据预先给定的偏差范围在两种模态之间自...简要分析了静止无功补偿器(Static Var Compensator,SVC)控制系统的组成和补偿原理,提出一种用于SVC控制器的模糊鄄PID双模控制设计方法。该模糊鄄PID控制器综合了模糊和PID两种控制方式的优点,根据预先给定的偏差范围在两种模态之间自动切换。该控制器用于控制非线性系统时,既具有模糊控制的简单有效,又具有PID控制的精确性。最后,给出了平衡与不平衡负载条件下的电压电流动静态波形。实验结果表明,该控制器具有较高的控制精度和鲁棒性。展开更多
文摘针对传统PI应用于静止无功补偿器(static var compen-sator,SVC)这个非线性复杂系统上,所体现出的快速性与稳定性之间的矛盾,以及对精确数学模型的依赖性,适应性及鲁棒性较差,该文设计了以非线性函数与传统PI控制器串联起来构成非线性PI控制器,简单易于实现。并且提出基于改进的单纯形加速算法(simplex method,SPX),以时间乘以误差绝对值积分(integrate of time multiplied absolute error,ITAE)准则作为寻优目标函数,对非线性PI控制器的参数KP、KI进行实时调整、寻优,使SVC系统的瞬态响应过程达到最佳。仿真和实际应用结果表明该最优非线性PI控制器,不但能快速、无超调的跟踪SVC系统的电压设定值,而且可实现对无功功率、三相不平衡等多个因素的综合补偿,具有较强的鲁棒性、适应性和较高的补偿精度。
文摘简要分析了静止无功补偿器(Static Var Compensator,SVC)控制系统的组成和补偿原理,提出一种用于SVC控制器的模糊鄄PID双模控制设计方法。该模糊鄄PID控制器综合了模糊和PID两种控制方式的优点,根据预先给定的偏差范围在两种模态之间自动切换。该控制器用于控制非线性系统时,既具有模糊控制的简单有效,又具有PID控制的精确性。最后,给出了平衡与不平衡负载条件下的电压电流动静态波形。实验结果表明,该控制器具有较高的控制精度和鲁棒性。