期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
A lumped mass nonconforming finite element method for nonlinear parabolic integro-differential equations on anisotropic meshes 被引量:6
1
作者 SHI Dong-yang WANG Hui-min LI Zhi-yan Dept. of Math., Zhengzhou Univ., Zhengzhou 450052, China 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第1期97-104,共8页
A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is d... A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection. 展开更多
关键词 nonlinear parabolic integro-differential equation nonconforming finite element anisotropic mesh lumped mass error estimate
下载PDF
FINITE ELEMENT METHOD FOR SOME NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
2
作者 Jiang Chengshun 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1999年第4期440-450,共11页
This paper studies the finite element method for some nonlinear hyperbolic partial differential equations with memory and dampling terms.A Crank\|Nicolson approximation for this kind of equations is presented.By using... This paper studies the finite element method for some nonlinear hyperbolic partial differential equations with memory and dampling terms.A Crank\|Nicolson approximation for this kind of equations is presented.By using the elliptic Ritz\|Volterra projection,the analysis of the error estimates for the finite element numerical solutions and the optimal H \+1\|norm error estimate are demonstrated. 展开更多
关键词 nonlinear hyperbolic equation m em ory term dam ping term Crank-Nicolson approxim a-tion Ritz-volterra projection finite elem ent m ethod
下载PDF
AN A.D.I.GALERKIN METHOD FOR NONLINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATION USING PATCH APPROXIMATION
3
作者 崔霞 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1999年第2期209-220,共12页
An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space var... An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space variable problems, the calculation is simplified; by using a local approxima-tion of the coefficients based on patches of finite elements, the coefficient matrix is updated at each time step; by using Ritz-Volterra projection, integration by part and other techniques, the influence coming from the integral term is treated; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity is treated. For both Galerkin and A. D. I. Galerkin schemes the con-vergence properties are rigorously demonstrated, the optimal H^1-norm and L^2-norm estimates are obtained. 展开更多
关键词 nonlinear PARABOLIC integro-differential equation alternating-direction finite element METHOD error estimate.
下载PDF
A SPECTRAL METHOD FOR A WEAKLY SINGULAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH PANTOGRAPH DELAY
4
作者 Weishan ZHENG Yanping CHEN 《Acta Mathematica Scientia》 SCIE CSCD 2022年第1期387-402,共16页
In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transforma... In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm. 展开更多
关键词 volterra integro-differential equation pantograph delay weakly singular kernel Jacobi-collocation spectral methods error analysis convergence analysis
下载PDF
On Existence of Entropy Solution for a Doubly Nonlinear Differential Equation with L1 -Data
5
作者 Safimba Soma Mohamed Bance 《Journal of Applied Mathematics and Physics》 2023年第12期4092-4127,共36页
We consider a class of doubly nonlinear history-dependent problems having a convection term and a pseudomonotone nonlinear diffusion operator associated an equation of the type ?<sub>t</sub>(k * (b(v) - b(... We consider a class of doubly nonlinear history-dependent problems having a convection term and a pseudomonotone nonlinear diffusion operator associated an equation of the type ?<sub>t</sub>(k * (b(v) - b(v<sub>0</sub>))) - div(a(x,Dv) + F(v)) = f where the right hand side belongs to L<sup>1</sup>. The kernel k belongs to the large class of PC kernels. In particular, the case of fractional time derivatives of order α ∈ (0,1) is included. Assuming b nondecreasing with L<sup>1</sup>-data, we prove existence in the framework of entropy solutions. The approach adopted for the proof is based on a several step approximation method and by using a result in the case of a strictly increasing b. 展开更多
关键词 Fractional Time Derivative nonlinear volterra equation Doubly nonlinear Entropy Solution
下载PDF
Volterra Integral Equations and Some Nonlinear Integral Equations with Variable Limit of Integration as Generalized Moment Problems 被引量:1
6
作者 Maria B. Pintarelli 《Journal of Mathematics and System Science》 2015年第1期32-38,共7页
In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equa... In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind f(t) = {a^t K(t, s)x(s)ds a ≤ t ≤ b or solve the Volterra integral equation of the second kind x(t) =f(t)+{a^t K(t,s)x(s)ds a ≤ t ≤ b is equivalent to solving a generalized moment problem of the form un = {a^b gn(s)x(s)ds n = 0,1,2… This shall apply for to find the solution of an integrodifferential equation of the form x'(t) = f(t) + {a^t K(t,s)x(s)ds for a ≤ t ≤ b and x(a) = a0 Also considering the nonlinear integral equation: f(x)= {fa^x y(x-t)y(t)dt This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques ofgeneralized moment problem. 展开更多
关键词 Generalized moment problems solution stability volterra integral equations nonlinear integral equations.
下载PDF
Numerical Solution of Nonlinear Fredholm-Volterra Integtral Equations via Piecewise Constant Function by Collocation Method 被引量:1
7
作者 A. Shahsavaran 《American Journal of Computational Mathematics》 2011年第2期134-138,共5页
In this work, we present a computational method for solving nonlinear Fredholm-Volterra integral equations of the second kind which is based on replacement of the unknown function by truncated series of well known Blo... In this work, we present a computational method for solving nonlinear Fredholm-Volterra integral equations of the second kind which is based on replacement of the unknown function by truncated series of well known Block-Pulse functions (BPfs) expansion. Error analysis is worked out that shows efficiency of the method. Finally, we also give some numerical examples. 展开更多
关键词 nonlinear Fredholm-volterra Integral equation Block-Pulse FUNCTION Error Analysis COLLOCATION Points
下载PDF
Regularization and Choice of the Parameter for the Third Kind Nonlinear Volterra-Stieltjes Integral Equation Solutions 被引量:1
8
作者 Nurgul Bedelova Avyt Asanov +1 位作者 Zhypar Orozmamatova Zhypargul Abdullaeva 《International Journal of Modern Nonlinear Theory and Application》 2021年第2期81-90,共10页
The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was c... The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was chosen. This can be used in further development of the theory of the integral equations in non-standard problems, classes in the numerical solution of third kind Volterra-Stieltjes integral equations, and when solving specific problems that lead to equations of the third kind. 展开更多
关键词 REGULARIZATION SOLUTIONS nonlinear volterra-Stieltjes Integral equations Third Kind Choice of Regularization Parameter
下载PDF
Runge-Kutta Method and Bolck by Block Method to Solve Nonlinear Fredholm-Volterra Integral Equation with Continuous Kernel
9
作者 A. M. Al-Bugami J. G. Al-Juaid 《Journal of Applied Mathematics and Physics》 2020年第9期2043-2054,共12页
In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a sy... In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a system of nonlinear Volterra integral equations. Runge-Kutta method (RKM) and Bolck by block method (BBM) are used to solve the system of nonlinear Volterra integral equations of the second kind (SNVIEs) with continuous kernel. The error in each case is calculated. 展开更多
关键词 nonlinear Fredholm-volterra Integral equation System of nonlinear volterra Integral equations Runge-Kutta Method Bolck by Block Method
下载PDF
Existence of Solutions to Nonlinear Impulsive Volterra Integral Equations in Banach Spaces
10
作者 陈芳启 田瑞兰 《Transactions of Tianjin University》 EI CAS 2005年第2期152-155,共4页
In this paper, the existence of solutions is studied for nonlinear impulsive Volterra integral equations with infinite moments of impulse effect on the half line R^+ in Banach spaces.By the use of a new comparison res... In this paper, the existence of solutions is studied for nonlinear impulsive Volterra integral equations with infinite moments of impulse effect on the half line R^+ in Banach spaces.By the use of a new comparison result and recurrence method, the new existence theorems are achieved under a weaker compactness-type condition, which generalize and improve the related results for this class of equations with finite moments of impulse effect on finite interval and infinite moments of impulse effect on infinite interval. 展开更多
关键词 nonlinear impulsive volterra integral equation Tonelii′s method extremal solutions
下载PDF
Collocation Method for Nonlinear Volterra-Fredholm Integral Equations
11
作者 Jafar Ahmadi Shali Parviz Darania Ali Asgar Jodayree Akbarfam 《Open Journal of Applied Sciences》 2012年第2期115-121,共7页
A fully discrete version of a piecewise polynomial collocation method based on new collocation points, is constructed to solve nonlinear Volterra-Fredholm integral equations. In this paper, we obtain existence and uni... A fully discrete version of a piecewise polynomial collocation method based on new collocation points, is constructed to solve nonlinear Volterra-Fredholm integral equations. In this paper, we obtain existence and uniqueness results and analyze the convergence properties of the collocation method when used to approximate smooth solutions of Volterra- Fredholm integral equations. 展开更多
关键词 COLLOCATION Method nonlinear volterra-Fredholm Integral equations Convergence Analysis Chelyshkov POLYNOMIALS
下载PDF
EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR VOLTERRA INTERGO-DIFFERENTIAL EQUATIONS 被引量:8
12
作者 蒋达清 魏俊杰 《Acta Mathematica Scientia》 SCIE CSCD 2001年第4期553-560,共8页
This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems ... This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems established to several biomathematical models, the paper improves some previous results and obtains some new results. 展开更多
关键词 volterra integro-differential equation EXISTENCE positive periodic solution fixed point theorem
下载PDF
SOLUTIONS FOR A SYSTEM OF NONLINEAR RANDOM INTEGRAL AND DIFFERENTIAL EQUATIONS UNDER WEAK TOPOLOGY
13
作者 丁协平 王凡 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第8期721-737,共17页
In this paper, a Darbao type random fixed point theorem for a system of weak continuous random operators with random domain is first proved. When, by using the theorem, some existence criteria of random solutions for ... In this paper, a Darbao type random fixed point theorem for a system of weak continuous random operators with random domain is first proved. When, by using the theorem, some existence criteria of random solutions for a systems of nonlinear random Volterra integral equations relative to the weak topology in Banach spaces are given. As applications, some existence theorems of weak random solutions for the random Cauchy problem of a system of nonlinear random differential equations are obtained, as well as the existence of extremal random solutions and random comparison results for these systems of random equations relative to weak topology in Banach spaces. The corresponding results of Szep, Mitchell-Smith, Cramer-Lakshmikantham, Lakshmikantham-Leela and Ding are improved and generalized by these theorems. 展开更多
关键词 system of nonlinear random volterra integral equations random Cauchy problem extremal random solution comparison result weak topology in Banach space
下载PDF
Existence Theorem for a Nonlinear Functional Integral Equation and an Initial Value Problem of Fractional Order in L<sub>1</sub>(R<sub>+</sub>)
14
作者 Ibrahim Abouelfarag Ibrahim Tarek S. Amer Yasser M. Aboessa 《Applied Mathematics》 2013年第2期402-409,共8页
The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we ded... The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we deduce the existence of solution of an initial value problem of fractional order that be studied only on a bounded interval. The main tools used are Schauder fixed point theorem, measure of weak noncompactness, superposition operator and fractional calculus. 展开更多
关键词 nonlinear Functional Integral equation volterra Operator Measure of Weak Noncompactness Fractional Calculus SCHAUDER Fixed Point Theorem
下载PDF
Laplace Discrete Adomian Decomposition Method for Solving Nonlinear Integro Differential Equations
15
作者 H. O. Bakodah M. Al-Mazmumy +1 位作者 S. O. Almuhalbedi Lazim Abdullah 《Journal of Applied Mathematics and Physics》 2019年第6期1388-1407,共20页
This paper proposes the Laplace Discrete Adomian Decomposition Method and its application for solving nonlinear integro-differential equations. This method is based upon the Laplace Adomian decomposition method couple... This paper proposes the Laplace Discrete Adomian Decomposition Method and its application for solving nonlinear integro-differential equations. This method is based upon the Laplace Adomian decomposition method coupled with some quadrature rules of numerical integration. Four numerical examples of integro-differential equations in both Volterra and Fredholm integrals are used to be solved by the proposed method. The performance of the proposed method is verified through absolute error measures between the approximated solutions and exact solutions. The series of experimental numerical results show that our proposed method performs in high accuracy and efficiency. The study clearly highlights that the proposed method could be used to overcome the analytical approaches in solving nonlinear integro-differential equations. 展开更多
关键词 integro-differential equation volterra integro-differential equation FREDHOLM integro-differential equation LAPLACE Adomian Decomposition Method QUADRATURE Rules
下载PDF
Variation of Parameters Method for Solving System of NonlinearVolterra Integro-Differential Equations
16
作者 Muhammad Aslam Noor Khalida Inayat Noor +1 位作者 Asif Waheed Eisa Al-Said 《Advances in Applied Mathematics and Mechanics》 SCIE 2012年第2期190-204,共15页
It is well known that nonlinear integro-differential equations play vital role in modeling of many physical processes,such as nano-hydrodynamics,drop wise condensation,oceanography,earthquake and wind ripple in desert... It is well known that nonlinear integro-differential equations play vital role in modeling of many physical processes,such as nano-hydrodynamics,drop wise condensation,oceanography,earthquake and wind ripple in desert.Inspired and motivated by these facts,we use the variation of parameters method for solving system of nonlinear Volterra integro-differential equations.The proposed technique is applied without any discretization,perturbation,transformation,restrictive assumptions and is free from Adomian’s polynomials.Several examples are given to verify the reliability and efficiency of the proposed technique. 展开更多
关键词 Variation of parameters method OCEANOGRAPHY system of nonlinear volterra integro-differential equations error estimates
原文传递
NUMERICAL ANALYSIS OF A NONLINEAR SINGULARLY PERTURBED DELAY VOLTERRA INTEGRO-DIFFERENTIAL EQUATION ON AN ADAPTIVE GRID 被引量:1
17
作者 Libin Liu Yanping Chen Ying Liang 《Journal of Computational Mathematics》 SCIE CSCD 2022年第2期258-274,共17页
In this paper,we study a nonlinear first-order singularly perturbed Volterra integro-differential equation with delay.This equation is discretized by the backward Euler for differential part and the composite numerica... In this paper,we study a nonlinear first-order singularly perturbed Volterra integro-differential equation with delay.This equation is discretized by the backward Euler for differential part and the composite numerical quadrature formula for integral part for which both an a priori and an a posteriori error analysis in the maximum norm are derived.Based on the a priori error bound and mesh equidistribution principle,we prove that there exists a mesh gives optimal first order convergence which is robust with respect to the perturbation parameter.The a posteriori error bound is used to choose a suitable monitor function and design a corresponding adaptive grid generation algorithm.Furthermore,we extend our presented adaptive grid algorithm to a class of second-order nonlinear singularly perturbed delay differential equations.Numerical results are provided to demonstrate the effectiveness of our presented monitor function.Meanwhile,it is shown that the standard arc-length monitor function is unsuitable for this type of singularly perturbed delay differential equations with a turning point. 展开更多
关键词 Delay volterra integro-differential equation Singularly perturbed Error analysis Monitor function
原文传递
非线性三维Volterra积分方程的一个高阶数值格式
18
作者 龙明丹 王自强 《贵州科学》 2023年第3期73-76,共4页
利用修正的block-by-block方法构造了非线性三维Volterra积分方程的一个高阶一致收敛的数值格式。该高阶数值格式具有一致的收敛阶,理论分析表明数值格式的收敛阶为4阶,并通过两个的数值算例以验证数值方案的适用性和有效性。
关键词 非线性三维volterra积分方程 数值算法 数值算例
下载PDF
一类非线性系统的广义伴随线性方程分析研究
19
作者 张波 张文博 彭志科 《力学学报》 EI CAS CSCD 北大核心 2024年第3期832-846,共15页
非线性输出频率响应函数是线性系统理论中频率响应函数在非线性系统中的一种推广,越来越多的学者已将其应用在结构损伤检测及故障诊断中.基于Volterra级数理论与由非线性微分方程描述的单输入单输出非线性系统的广义频率响应函数递归计... 非线性输出频率响应函数是线性系统理论中频率响应函数在非线性系统中的一种推广,越来越多的学者已将其应用在结构损伤检测及故障诊断中.基于Volterra级数理论与由非线性微分方程描述的单输入单输出非线性系统的广义频率响应函数递归计算公式,利用多重积分性质和多维傅里叶变换,将广义频率响应函数映射到了一维频域中,推导出了一类非线性系统的广义伴随线性方程计算公式.研究表明,这类系统的第n阶非线性输出响应是以系统输入激励和前n-1阶非线性输出响应的组合函数作为广义激励作用到系统各阶广义伴随线性方程中的输出响应,最后通过求解一系列线性微分方程可得到这类非线性系统的任意阶非线性输出响应,其结果弥补了伴随线性方程无法求解这类非线性系统的不足.同时,针对广义伴随线性方程的数值计算问题,论文提出了一种耦合计算法,提高了计算非线性输出响应的精度,为非线性输出频率响应函数的计算提供了一种新思路.最后利用广义伴随线性方程与线性算子理论研究了两种典型非线性系统中非线性现象产生的原因,研究结果为非线性系统的分析与设计提供了一种有效途径. 展开更多
关键词 非线性输出频率响应函数 广义伴随线性方程 广义频率响应函数 非线性振动 volterra级数
下载PDF
Spectral Petrov-Galerkin Methods for the Second Kind Volterra Type Integro-Differential Equations 被引量:4
20
作者 Xia Tao Ziqing Xie Xiaojun Zhou 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2011年第2期216-236,共21页
This work is to provide general spectral and pseudo-spectral Jacobi-Petrov-Galerkin approaches for the second kind Volterra integro-differential equations.The Gauss-Legendre quadrature formula is used to approximate t... This work is to provide general spectral and pseudo-spectral Jacobi-Petrov-Galerkin approaches for the second kind Volterra integro-differential equations.The Gauss-Legendre quadrature formula is used to approximate the integral operator and the inner product based on the Jacobi weight is implemented in the weak formulation in the numerical implementation.For some spectral and pseudo-spectral Jacobi-Petrov-Galerkin methods,a rigorous error analysis in both L2_(ω^(α,β))^(2),and L^(∞)norms is given provided that both the kernel function and the source function are sufficiently smooth.Numerical experiments validate the theoretical prediction. 展开更多
关键词 volterra integro-differential equation spectral Jacobi-Petrov-Galerkin pseudo-spectral Jacobi-Petrov-Galerkin spectral convergence
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部