A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is d...A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.展开更多
This paper studies the finite element method for some nonlinear hyperbolic partial differential equations with memory and dampling terms.A Crank\|Nicolson approximation for this kind of equations is presented.By using...This paper studies the finite element method for some nonlinear hyperbolic partial differential equations with memory and dampling terms.A Crank\|Nicolson approximation for this kind of equations is presented.By using the elliptic Ritz\|Volterra projection,the analysis of the error estimates for the finite element numerical solutions and the optimal H \+1\|norm error estimate are demonstrated.展开更多
An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space var...An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space variable problems, the calculation is simplified; by using a local approxima-tion of the coefficients based on patches of finite elements, the coefficient matrix is updated at each time step; by using Ritz-Volterra projection, integration by part and other techniques, the influence coming from the integral term is treated; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity is treated. For both Galerkin and A. D. I. Galerkin schemes the con-vergence properties are rigorously demonstrated, the optimal H^1-norm and L^2-norm estimates are obtained.展开更多
In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transforma...In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm.展开更多
We consider a class of doubly nonlinear history-dependent problems having a convection term and a pseudomonotone nonlinear diffusion operator associated an equation of the type ?<sub>t</sub>(k * (b(v) - b(...We consider a class of doubly nonlinear history-dependent problems having a convection term and a pseudomonotone nonlinear diffusion operator associated an equation of the type ?<sub>t</sub>(k * (b(v) - b(v<sub>0</sub>))) - div(a(x,Dv) + F(v)) = f where the right hand side belongs to L<sup>1</sup>. The kernel k belongs to the large class of PC kernels. In particular, the case of fractional time derivatives of order α ∈ (0,1) is included. Assuming b nondecreasing with L<sup>1</sup>-data, we prove existence in the framework of entropy solutions. The approach adopted for the proof is based on a several step approximation method and by using a result in the case of a strictly increasing b.展开更多
In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equa...In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind f(t) = {a^t K(t, s)x(s)ds a ≤ t ≤ b or solve the Volterra integral equation of the second kind x(t) =f(t)+{a^t K(t,s)x(s)ds a ≤ t ≤ b is equivalent to solving a generalized moment problem of the form un = {a^b gn(s)x(s)ds n = 0,1,2… This shall apply for to find the solution of an integrodifferential equation of the form x'(t) = f(t) + {a^t K(t,s)x(s)ds for a ≤ t ≤ b and x(a) = a0 Also considering the nonlinear integral equation: f(x)= {fa^x y(x-t)y(t)dt This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques ofgeneralized moment problem.展开更多
In this work, we present a computational method for solving nonlinear Fredholm-Volterra integral equations of the second kind which is based on replacement of the unknown function by truncated series of well known Blo...In this work, we present a computational method for solving nonlinear Fredholm-Volterra integral equations of the second kind which is based on replacement of the unknown function by truncated series of well known Block-Pulse functions (BPfs) expansion. Error analysis is worked out that shows efficiency of the method. Finally, we also give some numerical examples.展开更多
The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was c...The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was chosen. This can be used in further development of the theory of the integral equations in non-standard problems, classes in the numerical solution of third kind Volterra-Stieltjes integral equations, and when solving specific problems that lead to equations of the third kind.展开更多
In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a sy...In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a system of nonlinear Volterra integral equations. Runge-Kutta method (RKM) and Bolck by block method (BBM) are used to solve the system of nonlinear Volterra integral equations of the second kind (SNVIEs) with continuous kernel. The error in each case is calculated.展开更多
In this paper, the existence of solutions is studied for nonlinear impulsive Volterra integral equations with infinite moments of impulse effect on the half line R^+ in Banach spaces.By the use of a new comparison res...In this paper, the existence of solutions is studied for nonlinear impulsive Volterra integral equations with infinite moments of impulse effect on the half line R^+ in Banach spaces.By the use of a new comparison result and recurrence method, the new existence theorems are achieved under a weaker compactness-type condition, which generalize and improve the related results for this class of equations with finite moments of impulse effect on finite interval and infinite moments of impulse effect on infinite interval.展开更多
A fully discrete version of a piecewise polynomial collocation method based on new collocation points, is constructed to solve nonlinear Volterra-Fredholm integral equations. In this paper, we obtain existence and uni...A fully discrete version of a piecewise polynomial collocation method based on new collocation points, is constructed to solve nonlinear Volterra-Fredholm integral equations. In this paper, we obtain existence and uniqueness results and analyze the convergence properties of the collocation method when used to approximate smooth solutions of Volterra- Fredholm integral equations.展开更多
This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems ...This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems established to several biomathematical models, the paper improves some previous results and obtains some new results.展开更多
In this paper, a Darbao type random fixed point theorem for a system of weak continuous random operators with random domain is first proved. When, by using the theorem, some existence criteria of random solutions for ...In this paper, a Darbao type random fixed point theorem for a system of weak continuous random operators with random domain is first proved. When, by using the theorem, some existence criteria of random solutions for a systems of nonlinear random Volterra integral equations relative to the weak topology in Banach spaces are given. As applications, some existence theorems of weak random solutions for the random Cauchy problem of a system of nonlinear random differential equations are obtained, as well as the existence of extremal random solutions and random comparison results for these systems of random equations relative to weak topology in Banach spaces. The corresponding results of Szep, Mitchell-Smith, Cramer-Lakshmikantham, Lakshmikantham-Leela and Ding are improved and generalized by these theorems.展开更多
The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we ded...The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we deduce the existence of solution of an initial value problem of fractional order that be studied only on a bounded interval. The main tools used are Schauder fixed point theorem, measure of weak noncompactness, superposition operator and fractional calculus.展开更多
This paper proposes the Laplace Discrete Adomian Decomposition Method and its application for solving nonlinear integro-differential equations. This method is based upon the Laplace Adomian decomposition method couple...This paper proposes the Laplace Discrete Adomian Decomposition Method and its application for solving nonlinear integro-differential equations. This method is based upon the Laplace Adomian decomposition method coupled with some quadrature rules of numerical integration. Four numerical examples of integro-differential equations in both Volterra and Fredholm integrals are used to be solved by the proposed method. The performance of the proposed method is verified through absolute error measures between the approximated solutions and exact solutions. The series of experimental numerical results show that our proposed method performs in high accuracy and efficiency. The study clearly highlights that the proposed method could be used to overcome the analytical approaches in solving nonlinear integro-differential equations.展开更多
It is well known that nonlinear integro-differential equations play vital role in modeling of many physical processes,such as nano-hydrodynamics,drop wise condensation,oceanography,earthquake and wind ripple in desert...It is well known that nonlinear integro-differential equations play vital role in modeling of many physical processes,such as nano-hydrodynamics,drop wise condensation,oceanography,earthquake and wind ripple in desert.Inspired and motivated by these facts,we use the variation of parameters method for solving system of nonlinear Volterra integro-differential equations.The proposed technique is applied without any discretization,perturbation,transformation,restrictive assumptions and is free from Adomian’s polynomials.Several examples are given to verify the reliability and efficiency of the proposed technique.展开更多
In this paper,we study a nonlinear first-order singularly perturbed Volterra integro-differential equation with delay.This equation is discretized by the backward Euler for differential part and the composite numerica...In this paper,we study a nonlinear first-order singularly perturbed Volterra integro-differential equation with delay.This equation is discretized by the backward Euler for differential part and the composite numerical quadrature formula for integral part for which both an a priori and an a posteriori error analysis in the maximum norm are derived.Based on the a priori error bound and mesh equidistribution principle,we prove that there exists a mesh gives optimal first order convergence which is robust with respect to the perturbation parameter.The a posteriori error bound is used to choose a suitable monitor function and design a corresponding adaptive grid generation algorithm.Furthermore,we extend our presented adaptive grid algorithm to a class of second-order nonlinear singularly perturbed delay differential equations.Numerical results are provided to demonstrate the effectiveness of our presented monitor function.Meanwhile,it is shown that the standard arc-length monitor function is unsuitable for this type of singularly perturbed delay differential equations with a turning point.展开更多
This work is to provide general spectral and pseudo-spectral Jacobi-Petrov-Galerkin approaches for the second kind Volterra integro-differential equations.The Gauss-Legendre quadrature formula is used to approximate t...This work is to provide general spectral and pseudo-spectral Jacobi-Petrov-Galerkin approaches for the second kind Volterra integro-differential equations.The Gauss-Legendre quadrature formula is used to approximate the integral operator and the inner product based on the Jacobi weight is implemented in the weak formulation in the numerical implementation.For some spectral and pseudo-spectral Jacobi-Petrov-Galerkin methods,a rigorous error analysis in both L2_(ω^(α,β))^(2),and L^(∞)norms is given provided that both the kernel function and the source function are sufficiently smooth.Numerical experiments validate the theoretical prediction.展开更多
基金Supported by the National Natural Science Foundation of China (10671184)
文摘A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.
文摘This paper studies the finite element method for some nonlinear hyperbolic partial differential equations with memory and dampling terms.A Crank\|Nicolson approximation for this kind of equations is presented.By using the elliptic Ritz\|Volterra projection,the analysis of the error estimates for the finite element numerical solutions and the optimal H \+1\|norm error estimate are demonstrated.
文摘An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space variable problems, the calculation is simplified; by using a local approxima-tion of the coefficients based on patches of finite elements, the coefficient matrix is updated at each time step; by using Ritz-Volterra projection, integration by part and other techniques, the influence coming from the integral term is treated; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity is treated. For both Galerkin and A. D. I. Galerkin schemes the con-vergence properties are rigorously demonstrated, the optimal H^1-norm and L^2-norm estimates are obtained.
基金supported by the State Key Program of National Natural Science Foundation of China(11931003)the National Natural Science Foundation of China(41974133,11671157)。
文摘In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm.
文摘We consider a class of doubly nonlinear history-dependent problems having a convection term and a pseudomonotone nonlinear diffusion operator associated an equation of the type ?<sub>t</sub>(k * (b(v) - b(v<sub>0</sub>))) - div(a(x,Dv) + F(v)) = f where the right hand side belongs to L<sup>1</sup>. The kernel k belongs to the large class of PC kernels. In particular, the case of fractional time derivatives of order α ∈ (0,1) is included. Assuming b nondecreasing with L<sup>1</sup>-data, we prove existence in the framework of entropy solutions. The approach adopted for the proof is based on a several step approximation method and by using a result in the case of a strictly increasing b.
文摘In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind f(t) = {a^t K(t, s)x(s)ds a ≤ t ≤ b or solve the Volterra integral equation of the second kind x(t) =f(t)+{a^t K(t,s)x(s)ds a ≤ t ≤ b is equivalent to solving a generalized moment problem of the form un = {a^b gn(s)x(s)ds n = 0,1,2… This shall apply for to find the solution of an integrodifferential equation of the form x'(t) = f(t) + {a^t K(t,s)x(s)ds for a ≤ t ≤ b and x(a) = a0 Also considering the nonlinear integral equation: f(x)= {fa^x y(x-t)y(t)dt This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques ofgeneralized moment problem.
文摘In this work, we present a computational method for solving nonlinear Fredholm-Volterra integral equations of the second kind which is based on replacement of the unknown function by truncated series of well known Block-Pulse functions (BPfs) expansion. Error analysis is worked out that shows efficiency of the method. Finally, we also give some numerical examples.
文摘The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was chosen. This can be used in further development of the theory of the integral equations in non-standard problems, classes in the numerical solution of third kind Volterra-Stieltjes integral equations, and when solving specific problems that lead to equations of the third kind.
文摘In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a system of nonlinear Volterra integral equations. Runge-Kutta method (RKM) and Bolck by block method (BBM) are used to solve the system of nonlinear Volterra integral equations of the second kind (SNVIEs) with continuous kernel. The error in each case is calculated.
文摘In this paper, the existence of solutions is studied for nonlinear impulsive Volterra integral equations with infinite moments of impulse effect on the half line R^+ in Banach spaces.By the use of a new comparison result and recurrence method, the new existence theorems are achieved under a weaker compactness-type condition, which generalize and improve the related results for this class of equations with finite moments of impulse effect on finite interval and infinite moments of impulse effect on infinite interval.
文摘A fully discrete version of a piecewise polynomial collocation method based on new collocation points, is constructed to solve nonlinear Volterra-Fredholm integral equations. In this paper, we obtain existence and uniqueness results and analyze the convergence properties of the collocation method when used to approximate smooth solutions of Volterra- Fredholm integral equations.
基金The research supported by the National Natural Science Foundation of China.
文摘This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems established to several biomathematical models, the paper improves some previous results and obtains some new results.
文摘In this paper, a Darbao type random fixed point theorem for a system of weak continuous random operators with random domain is first proved. When, by using the theorem, some existence criteria of random solutions for a systems of nonlinear random Volterra integral equations relative to the weak topology in Banach spaces are given. As applications, some existence theorems of weak random solutions for the random Cauchy problem of a system of nonlinear random differential equations are obtained, as well as the existence of extremal random solutions and random comparison results for these systems of random equations relative to weak topology in Banach spaces. The corresponding results of Szep, Mitchell-Smith, Cramer-Lakshmikantham, Lakshmikantham-Leela and Ding are improved and generalized by these theorems.
文摘The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we deduce the existence of solution of an initial value problem of fractional order that be studied only on a bounded interval. The main tools used are Schauder fixed point theorem, measure of weak noncompactness, superposition operator and fractional calculus.
文摘This paper proposes the Laplace Discrete Adomian Decomposition Method and its application for solving nonlinear integro-differential equations. This method is based upon the Laplace Adomian decomposition method coupled with some quadrature rules of numerical integration. Four numerical examples of integro-differential equations in both Volterra and Fredholm integrals are used to be solved by the proposed method. The performance of the proposed method is verified through absolute error measures between the approximated solutions and exact solutions. The series of experimental numerical results show that our proposed method performs in high accuracy and efficiency. The study clearly highlights that the proposed method could be used to overcome the analytical approaches in solving nonlinear integro-differential equations.
基金This research is supported by the Visiting Professor Program of King Saud University,Riyadh,Saudi Arabia and Research grant No.KSU.-VPP.108.
文摘It is well known that nonlinear integro-differential equations play vital role in modeling of many physical processes,such as nano-hydrodynamics,drop wise condensation,oceanography,earthquake and wind ripple in desert.Inspired and motivated by these facts,we use the variation of parameters method for solving system of nonlinear Volterra integro-differential equations.The proposed technique is applied without any discretization,perturbation,transformation,restrictive assumptions and is free from Adomian’s polynomials.Several examples are given to verify the reliability and efficiency of the proposed technique.
基金This work is supported by the State Key Program of National Natural Science Foundation of China(11931003)National Science Foundation of China(41974133,11761015,11971410)the Natural Science Foundation of Guangxi(2020GXNSFAA159010).
文摘In this paper,we study a nonlinear first-order singularly perturbed Volterra integro-differential equation with delay.This equation is discretized by the backward Euler for differential part and the composite numerical quadrature formula for integral part for which both an a priori and an a posteriori error analysis in the maximum norm are derived.Based on the a priori error bound and mesh equidistribution principle,we prove that there exists a mesh gives optimal first order convergence which is robust with respect to the perturbation parameter.The a posteriori error bound is used to choose a suitable monitor function and design a corresponding adaptive grid generation algorithm.Furthermore,we extend our presented adaptive grid algorithm to a class of second-order nonlinear singularly perturbed delay differential equations.Numerical results are provided to demonstrate the effectiveness of our presented monitor function.Meanwhile,it is shown that the standard arc-length monitor function is unsuitable for this type of singularly perturbed delay differential equations with a turning point.
基金supported by the National Natural Science Foundation of China(10871066)Project of Scientific Research Fund of Hunan Provincial Education Department(09K025)+2 种基金Programme for New Century Excellent Talents in University(NCET-06-0712)supported by the Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Provincesupported in part by Natural Science Foundation of Guizhou Province(LKS[2010]05).
文摘This work is to provide general spectral and pseudo-spectral Jacobi-Petrov-Galerkin approaches for the second kind Volterra integro-differential equations.The Gauss-Legendre quadrature formula is used to approximate the integral operator and the inner product based on the Jacobi weight is implemented in the weak formulation in the numerical implementation.For some spectral and pseudo-spectral Jacobi-Petrov-Galerkin methods,a rigorous error analysis in both L2_(ω^(α,β))^(2),and L^(∞)norms is given provided that both the kernel function and the source function are sufficiently smooth.Numerical experiments validate the theoretical prediction.