The purpose of this research is to improve the robustness of the autonomous system in order to improve the position and velocity estimation of an Unmanned Aerial Vehicle(UAV).Therefore, new integrated SINS/GPS navigat...The purpose of this research is to improve the robustness of the autonomous system in order to improve the position and velocity estimation of an Unmanned Aerial Vehicle(UAV).Therefore, new integrated SINS/GPS navigation scheme based on Interacting Multiple Nonlinear Fuzzy Adaptive H_∞ Models(IMM-NFAH_∞) filtering technique for UAV is presented. The proposed IMM-NFAH_∞ strategy switches between two different Nonlinear Fuzzy Adaptive H_∞(NFAH_∞) filters and each NFAH_∞ filter is based on different fuzzy logic inference systems. The newly proposed technique takes into consideration the high order Taylor series terms and adapts the nonlinear H_∞ filter based on different fuzzy inference systems via adaptive filter bounds(di),along with disturbance attenuation parameter c. Simulation analysis validates the performance of the proposed algorithm, and the comparison with nonlinear H_∞(NH_∞) filter and that with different NFAH_∞ filters demonstrate the effectiveness of UAV localization utilizing IMM-NFAH_∞ filter.展开更多
With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued no...With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.展开更多
The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cub...The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cubature Kalman filter(AGSSCKF) with a split-merge scheme is proposed. It is developed based on the squared-root extension of newly introduced cubature Kalman filter(SCKF) and is built within a Gaussian-sum framework. Based on the condition that the probability density functions of process noises and initial state are denoted by a Gaussian sum using optimization method, a bank of SCKF are used as the sub-filters to estimate state of system with the corresponding weights respectively, which is adaptively updated. The new algorithm consists of an adaptive splitting and merging procedure according to a proposed split-decision model based on the nonlinearity degree of measurement. The results of two simulation scenarios(one-dimensional state estimation and bearings-only tracking) show that the proposed filter demonstrates comparable performance to the particle filter with significantly reduced computational cost.展开更多
The gradients of a quaternion-valued function are often required for quaternionic signal processing algorithms.The HR gradient operator provides a viable framework and has found a number of applications.However,the ap...The gradients of a quaternion-valued function are often required for quaternionic signal processing algorithms.The HR gradient operator provides a viable framework and has found a number of applications.However,the applications so far have been limited to mainly real-valued quaternion functions and linear quaternionvalued functions.To generalize the operator to nonlinear quaternion functions,we define a restricted version of the HR operator,which comes in two versions,the left and the right ones.We then present a detailed analysis of the properties of the operators,including several different product rules and chain rules.Using the new rules,we derive explicit expressions for the derivatives of a class of regular nonlinear quaternion-valued functions,and prove that the restricted HR gradients are consistent with the gradients in the real domain.As an application,the derivation of the least mean square algorithm and a nonlinear adaptive algorithm is provided.Simulation results based on vector sensor arrays are presented as an example to demonstrate the effectiveness of the quaternion-valued signal model and the derived signal processing algorithm.展开更多
基金supported by a grant from the National Natural Science Foundation of China(No.61375082)
文摘The purpose of this research is to improve the robustness of the autonomous system in order to improve the position and velocity estimation of an Unmanned Aerial Vehicle(UAV).Therefore, new integrated SINS/GPS navigation scheme based on Interacting Multiple Nonlinear Fuzzy Adaptive H_∞ Models(IMM-NFAH_∞) filtering technique for UAV is presented. The proposed IMM-NFAH_∞ strategy switches between two different Nonlinear Fuzzy Adaptive H_∞(NFAH_∞) filters and each NFAH_∞ filter is based on different fuzzy logic inference systems. The newly proposed technique takes into consideration the high order Taylor series terms and adapts the nonlinear H_∞ filter based on different fuzzy inference systems via adaptive filter bounds(di),along with disturbance attenuation parameter c. Simulation analysis validates the performance of the proposed algorithm, and the comparison with nonlinear H_∞(NH_∞) filter and that with different NFAH_∞ filters demonstrate the effectiveness of UAV localization utilizing IMM-NFAH_∞ filter.
基金supported by the National Natural Science Foundation of China(6100115361271415+4 种基金6140149961531015)the Fundamental Research Funds for the Central Universities(3102014JCQ010103102014ZD0041)the Opening Research Foundation of State Key Laboratory of Underwater Information Processing and Control(9140C231002130C23085)
文摘With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.
基金supported by the National Natural Science Foundation of China(No. 61032001)Shandong Provincial Natural Science Foundation of China (No. ZR2012FQ004)
文摘The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cubature Kalman filter(AGSSCKF) with a split-merge scheme is proposed. It is developed based on the squared-root extension of newly introduced cubature Kalman filter(SCKF) and is built within a Gaussian-sum framework. Based on the condition that the probability density functions of process noises and initial state are denoted by a Gaussian sum using optimization method, a bank of SCKF are used as the sub-filters to estimate state of system with the corresponding weights respectively, which is adaptively updated. The new algorithm consists of an adaptive splitting and merging procedure according to a proposed split-decision model based on the nonlinearity degree of measurement. The results of two simulation scenarios(one-dimensional state estimation and bearings-only tracking) show that the proposed filter demonstrates comparable performance to the particle filter with significantly reduced computational cost.
文摘The gradients of a quaternion-valued function are often required for quaternionic signal processing algorithms.The HR gradient operator provides a viable framework and has found a number of applications.However,the applications so far have been limited to mainly real-valued quaternion functions and linear quaternionvalued functions.To generalize the operator to nonlinear quaternion functions,we define a restricted version of the HR operator,which comes in two versions,the left and the right ones.We then present a detailed analysis of the properties of the operators,including several different product rules and chain rules.Using the new rules,we derive explicit expressions for the derivatives of a class of regular nonlinear quaternion-valued functions,and prove that the restricted HR gradients are consistent with the gradients in the real domain.As an application,the derivation of the least mean square algorithm and a nonlinear adaptive algorithm is provided.Simulation results based on vector sensor arrays are presented as an example to demonstrate the effectiveness of the quaternion-valued signal model and the derived signal processing algorithm.