We present a nonlinear ytterbium-doped fiber amplifier based on enhanced nonlinear effects that can produce a flat broadband spectrum ranging from 1050–1225 nm with a maximum average output power of 7.8 W at 14 W pum...We present a nonlinear ytterbium-doped fiber amplifier based on enhanced nonlinear effects that can produce a flat broadband spectrum ranging from 1050–1225 nm with a maximum average output power of 7.8 W at 14 W pump power.Its repetition rate is 89 MHz. Using a pair of gratings and two knife edges as a filter, wavelength tunable picosecond pulses of tens to hundreds of milliwatts can be obtained in the broadband spectrum range. The output power, pulse width, and spectrum(center wavelength and linewidth) are adjusted by tuning the distance of the grating pair and/or the knife edges.Fixing the distance between the two gratings at 15 mm and keeping the output spectrum linewidth at approximately 20 nm,the shortest pulse width obtained is less than 1 ps centered at 1080 nm. The longest wavelength of the short pulses is around1200 nm, and its output power and pulse width are 40 m W and 5.79 ps, respectively. The generation of a flat broadband spectrum is also discussed in this paper.展开更多
This paper analyses bright and dark spatial self-similar waves propagation and collision in graded-index nonlinear waveguide amplifiers with self-focusing and self-defocusing Kerr nonlinearities. It finds an appropria...This paper analyses bright and dark spatial self-similar waves propagation and collision in graded-index nonlinear waveguide amplifiers with self-focusing and self-defocusing Kerr nonlinearities. It finds an appropriate transformation for the first time such that the nonlinear Schrodinger equation (NLSE) with varying coefficients transform into standard NLSE. It obtains one-solitonlike, two-solitonlike and multi-solitonlike self-similar wave solutions by using the transformation. Furthermore, it analyses the features of the self-similar waves and their collisions.展开更多
We report on a novel architecture to suppress the multi-pulse formation in an all-polarization-maintaining figure-9 erbium-doped fiber laser under high pump power. A 2×2 fiber coupler is introduced into the phase...We report on a novel architecture to suppress the multi-pulse formation in an all-polarization-maintaining figure-9 erbium-doped fiber laser under high pump power. A 2×2 fiber coupler is introduced into the phase-biased nonlinear amplifying loop mirror to extract part of intracavity laser power as a laser output, and the dependence of output couple ratio of fiber coupler on the mode-locking state is experimentally investigated. The intracavity nonlinear effect is mitigated by lowering the intracavity laser power, which is conducive to avoiding the multi-pulse formation. In the meantime, the loss-imbalance induced by fiber coupler is helpful in improving the self-starting ability. With the proposed laser structure,the multiple pulse formation can be suppressed and high power single pulse train can be obtained. The laser emits three pulse trains which is convenient for some applications. Finally, the output power values of three ports are 5.3 m W, 51.3 m W,and 13.2 m W, respectively. The total single pulse output power is 69.8 m W, which is more than 10 times the result without OC2. The total slope efficiency is about 10.1%. The repetition rate of three pulse trains is 21.17 MHz, and the pulse widths are 2.8 ps, 2.63 ps, and 6.66 ps, respectively.展开更多
Stimulated Raman scattering (SRS) effect is considered to be one of the main obstacles for power scaling in general-type fber lasers. Different from previous techniques that aim at suppressing SRS, nonlinear fiber a...Stimulated Raman scattering (SRS) effect is considered to be one of the main obstacles for power scaling in general-type fber lasers. Different from previous techniques that aim at suppressing SRS, nonlinear fiber amplifier (NFA), which manipulates and employs the SRS for power scaling in rare-earth-doped fiber, is under intensive research in recent years. In this paper, the authors will present an all-round study on this new kind of high-power fiber amplifier. A theoretical model is proposed based on the rate equation and amplified spontaneous emission (ASE), with random noise taken into account. By numerical solving of the theoretical model, the power scaling potential, heat analysis and advantages in suppressing the undesired backscattering light are quantificationally analyzed for the first time. Then two different types of high-power NFAs are demonstrated individually. Firstly, a laser diode pumped NFA has reached kilowatt output power, and the results agree well with theoretical predictions. Secondly, a tandem-pumped NFA is proposed for the first time and validated experimentally, in which 1.5 kW output power has been achieved. The authors also briefly discuss several new issues relating to the complex nonlinear dynamics that occur in high-power NFAs, which might be interesting topics for future endeavors.展开更多
We demonstrate an optical frequency comb(OFC)based on a turnkey mode-locked laser with a figure-9-shape structure and polarization-maintaining fibers,for the comparison of frequency among optical clocks with wavelengt...We demonstrate an optical frequency comb(OFC)based on a turnkey mode-locked laser with a figure-9-shape structure and polarization-maintaining fibers,for the comparison of frequency among optical clocks with wavelengths of 698 nm,729 nm,1068 nm,and 1156 nm.We adopt a multi-branch approach in order to produce high power OFC signals at these specific wavelengths,enabling the signal-to-noise ratio of the beatnotes between the OFC and the clock lasers to exceed30 d B at a resolution bandwidth of 300 k Hz.This approach makes the supercontinuum spectra much easier to be generated than a single branch OFC.However,more out-of-loop fibers degrade the long-term frequency instability due to thermal drift.To minimize the thermal drift effect,we set the fiber lengths of different branches to be similar,and we stabilize the temperature as well.The out-of-loop frequency instability of the OFC due to the incoherence of the multi-branch is about5.5×10^(19) for 4000 s,while the in-loop frequency instability of fceo and that of fbeat are 7.5×10^(18) for 1 s and 8.5×10^(18) for 1 s,respectively.The turnkey OFC meets the requirement for the comparison of frequency between the best optical clocks.展开更多
We have investigated the transient characteristics of discrete Raman Amplifiers and found that the response time caused by gain saturation is dependent upon the wavelength, which corresponds to the effective length of...We have investigated the transient characteristics of discrete Raman Amplifiers and found that the response time caused by gain saturation is dependent upon the wavelength, which corresponds to the effective length of the pump light.展开更多
The authors regret that one of the coauthors was inadvertently omitted in the previous paper. E. Varene was a member of the Institut fur Festk6rperphysik at the Technische Universitat Berlin and contributed to the res...The authors regret that one of the coauthors was inadvertently omitted in the previous paper. E. Varene was a member of the Institut fur Festk6rperphysik at the Technische Universitat Berlin and contributed to the results on cross-phase modulation.展开更多
In this paper, the influence of temperature on the intracavity optical parametric oscillator(IOPO) is investigated by using the stimulated temperature-dependent emission cross section of laser crystal. The rate equa...In this paper, the influence of temperature on the intracavity optical parametric oscillator(IOPO) is investigated by using the stimulated temperature-dependent emission cross section of laser crystal. The rate equations under plane wave approximation have been used for simulation of signal output pulse. Results show that the signal output pulse width is decreased by increasing the laser crystal temperature. Also, the signal output energy is increased by the increasing of the laser crystal temperature. The simulation results for IOPO based on Nd:YAG and Nd:YVO_4, show that the signal pulse energies are increased by 3.2 and 5.6 times respectively when the laser crystal temperature increased from 15℃ to 300℃. The presented model indicates that the temperature sensitivity of Nd:YVO_4-based IOPOs is more than that of Nd:YAG-based IOPOs which is expected from a physical point of view.展开更多
A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed devic...A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed device performs efficient high-quality amplification and compression of solitons.展开更多
We report the first demonstration of a unidirectional,isolator-free 2-μm thulium-doped fiber(TDF)laser,relying on the properties of the theta cavity(ring resonator with S-shaped feedback).The core pumped theta cavity...We report the first demonstration of a unidirectional,isolator-free 2-μm thulium-doped fiber(TDF)laser,relying on the properties of the theta cavity(ring resonator with S-shaped feedback).The core pumped theta cavity TDF laser provides sub-Watt output power with a slope efficiency of 25%,a 2 dB flat tuning range of 1900–2050 nm,and a linewidth of 0.2 nm,and achieves the extinction ratio of 18–25 dB(depending on the feedback value)between the favored and suppressed lasing directions.It is shown that these characteristics are competitive with,if not superior to,those of conventional ring cavities.The simulation results of the linear and Kerr-nonlinear theta cavities are also presented,explaining certain unexpected features of the laser behavior and establishing the importance of the doped fiber nonlinearity on the spectral shaping of the emitted signal.展开更多
Orthogonal frequency division multiplexing(OFDM) is an attractive technique to realize high data rate in light emitting diodes(LEDs)-based visible light communication(VLC). However, high peak-to-average power ratio(PA...Orthogonal frequency division multiplexing(OFDM) is an attractive technique to realize high data rate in light emitting diodes(LEDs)-based visible light communication(VLC). However, high peak-to-average power ratio(PAPR) of OFDM makes VLC-OFDM very sensitive to the nonlinearity of LEDs. In this paper, the discrete Fourier transform-spread(DFT-spread) combined with clipping method is proposed to reduce the PAPR of OFDM signal in VLC system. Combining simulation with experiment, a performance comparison is made among conventional OFDM, DFT-spread-OFDM, and clipped DFT-spread-OFDM with different clipping ratios(CRs) in a single LED-based VLC system. The experimental results show that the proposed clipped DFT-spread-OFDM method can effectively improve the system performance compared with the other two methods. At the optimum signal peak-to-peak(PTP) value, by using the clipped DFT-spread-OFDM scheme with CR at 8 dB, the bit error rate(BER) of the system can be reduced from 0.003 7 to 0.000 287.展开更多
基金supported by the National Basic Research Program of China(Grant No.2013CB922404)the National Scientific Research Project of China(Grant No.61177047)the National Natural Science Foundation of China(Grant No.61575011)
文摘We present a nonlinear ytterbium-doped fiber amplifier based on enhanced nonlinear effects that can produce a flat broadband spectrum ranging from 1050–1225 nm with a maximum average output power of 7.8 W at 14 W pump power.Its repetition rate is 89 MHz. Using a pair of gratings and two knife edges as a filter, wavelength tunable picosecond pulses of tens to hundreds of milliwatts can be obtained in the broadband spectrum range. The output power, pulse width, and spectrum(center wavelength and linewidth) are adjusted by tuning the distance of the grating pair and/or the knife edges.Fixing the distance between the two gratings at 15 mm and keeping the output spectrum linewidth at approximately 20 nm,the shortest pulse width obtained is less than 1 ps centered at 1080 nm. The longest wavelength of the short pulses is around1200 nm, and its output power and pulse width are 40 m W and 5.79 ps, respectively. The generation of a flat broadband spectrum is also discussed in this paper.
基金Project supported by the National Natural Science Foundation of China(Grant No10575087)the Natural Science Foundation of Zhejiang Province,China(Grant No Y605056)
文摘This paper analyses bright and dark spatial self-similar waves propagation and collision in graded-index nonlinear waveguide amplifiers with self-focusing and self-defocusing Kerr nonlinearities. It finds an appropriate transformation for the first time such that the nonlinear Schrodinger equation (NLSE) with varying coefficients transform into standard NLSE. It obtains one-solitonlike, two-solitonlike and multi-solitonlike self-similar wave solutions by using the transformation. Furthermore, it analyses the features of the self-similar waves and their collisions.
基金Project supported by the National Natural Science Foundation of China(Grant No.51905528)the Key Research Project of Bureau of Frontier Sciences and Education+1 种基金Chinese Academy of Sciences(Grant No.QYZDY-SSW-JSC008)the National Key Research and Development Project,China(Grant Nos.2019YFB2005600 and 2018YFB2003403)。
文摘We report on a novel architecture to suppress the multi-pulse formation in an all-polarization-maintaining figure-9 erbium-doped fiber laser under high pump power. A 2×2 fiber coupler is introduced into the phase-biased nonlinear amplifying loop mirror to extract part of intracavity laser power as a laser output, and the dependence of output couple ratio of fiber coupler on the mode-locking state is experimentally investigated. The intracavity nonlinear effect is mitigated by lowering the intracavity laser power, which is conducive to avoiding the multi-pulse formation. In the meantime, the loss-imbalance induced by fiber coupler is helpful in improving the self-starting ability. With the proposed laser structure,the multiple pulse formation can be suppressed and high power single pulse train can be obtained. The laser emits three pulse trains which is convenient for some applications. Finally, the output power values of three ports are 5.3 m W, 51.3 m W,and 13.2 m W, respectively. The total single pulse output power is 69.8 m W, which is more than 10 times the result without OC2. The total slope efficiency is about 10.1%. The repetition rate of three pulse trains is 21.17 MHz, and the pulse widths are 2.8 ps, 2.63 ps, and 6.66 ps, respectively.
基金supported by the Natural Science Foundation of Hunan Province,China(No.2018JJ2474)the Huo Yingdong Education Foundation of China
文摘Stimulated Raman scattering (SRS) effect is considered to be one of the main obstacles for power scaling in general-type fber lasers. Different from previous techniques that aim at suppressing SRS, nonlinear fiber amplifier (NFA), which manipulates and employs the SRS for power scaling in rare-earth-doped fiber, is under intensive research in recent years. In this paper, the authors will present an all-round study on this new kind of high-power fiber amplifier. A theoretical model is proposed based on the rate equation and amplified spontaneous emission (ASE), with random noise taken into account. By numerical solving of the theoretical model, the power scaling potential, heat analysis and advantages in suppressing the undesired backscattering light are quantificationally analyzed for the first time. Then two different types of high-power NFAs are demonstrated individually. Firstly, a laser diode pumped NFA has reached kilowatt output power, and the results agree well with theoretical predictions. Secondly, a tandem-pumped NFA is proposed for the first time and validated experimentally, in which 1.5 kW output power has been achieved. The authors also briefly discuss several new issues relating to the complex nonlinear dynamics that occur in high-power NFAs, which might be interesting topics for future endeavors.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB35030101)the National Natural Science Foundation of China(Grant No.61825505)+1 种基金the Quantum Control and Quantum Information of the National Key Research and Development Program of China(Grant No.2020YFA0309800)the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2020JQ434)。
文摘We demonstrate an optical frequency comb(OFC)based on a turnkey mode-locked laser with a figure-9-shape structure and polarization-maintaining fibers,for the comparison of frequency among optical clocks with wavelengths of 698 nm,729 nm,1068 nm,and 1156 nm.We adopt a multi-branch approach in order to produce high power OFC signals at these specific wavelengths,enabling the signal-to-noise ratio of the beatnotes between the OFC and the clock lasers to exceed30 d B at a resolution bandwidth of 300 k Hz.This approach makes the supercontinuum spectra much easier to be generated than a single branch OFC.However,more out-of-loop fibers degrade the long-term frequency instability due to thermal drift.To minimize the thermal drift effect,we set the fiber lengths of different branches to be similar,and we stabilize the temperature as well.The out-of-loop frequency instability of the OFC due to the incoherence of the multi-branch is about5.5×10^(19) for 4000 s,while the in-loop frequency instability of fceo and that of fbeat are 7.5×10^(18) for 1 s and 8.5×10^(18) for 1 s,respectively.The turnkey OFC meets the requirement for the comparison of frequency between the best optical clocks.
文摘We have investigated the transient characteristics of discrete Raman Amplifiers and found that the response time caused by gain saturation is dependent upon the wavelength, which corresponds to the effective length of the pump light.
文摘The authors regret that one of the coauthors was inadvertently omitted in the previous paper. E. Varene was a member of the Institut fur Festk6rperphysik at the Technische Universitat Berlin and contributed to the results on cross-phase modulation.
文摘In this paper, the influence of temperature on the intracavity optical parametric oscillator(IOPO) is investigated by using the stimulated temperature-dependent emission cross section of laser crystal. The rate equations under plane wave approximation have been used for simulation of signal output pulse. Results show that the signal output pulse width is decreased by increasing the laser crystal temperature. Also, the signal output energy is increased by the increasing of the laser crystal temperature. The simulation results for IOPO based on Nd:YAG and Nd:YVO_4, show that the signal pulse energies are increased by 3.2 and 5.6 times respectively when the laser crystal temperature increased from 15℃ to 300℃. The presented model indicates that the temperature sensitivity of Nd:YVO_4-based IOPOs is more than that of Nd:YAG-based IOPOs which is expected from a physical point of view.
基金The authors acknowledge the support of the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU5096/98E).
文摘A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed device performs efficient high-quality amplification and compression of solitons.
基金This work is supported in part by the SNSF under grant agreement 200021_140816.
文摘We report the first demonstration of a unidirectional,isolator-free 2-μm thulium-doped fiber(TDF)laser,relying on the properties of the theta cavity(ring resonator with S-shaped feedback).The core pumped theta cavity TDF laser provides sub-Watt output power with a slope efficiency of 25%,a 2 dB flat tuning range of 1900–2050 nm,and a linewidth of 0.2 nm,and achieves the extinction ratio of 18–25 dB(depending on the feedback value)between the favored and suppressed lasing directions.It is shown that these characteristics are competitive with,if not superior to,those of conventional ring cavities.The simulation results of the linear and Kerr-nonlinear theta cavities are also presented,explaining certain unexpected features of the laser behavior and establishing the importance of the doped fiber nonlinearity on the spectral shaping of the emitted signal.
文摘Orthogonal frequency division multiplexing(OFDM) is an attractive technique to realize high data rate in light emitting diodes(LEDs)-based visible light communication(VLC). However, high peak-to-average power ratio(PAPR) of OFDM makes VLC-OFDM very sensitive to the nonlinearity of LEDs. In this paper, the discrete Fourier transform-spread(DFT-spread) combined with clipping method is proposed to reduce the PAPR of OFDM signal in VLC system. Combining simulation with experiment, a performance comparison is made among conventional OFDM, DFT-spread-OFDM, and clipped DFT-spread-OFDM with different clipping ratios(CRs) in a single LED-based VLC system. The experimental results show that the proposed clipped DFT-spread-OFDM method can effectively improve the system performance compared with the other two methods. At the optimum signal peak-to-peak(PTP) value, by using the clipped DFT-spread-OFDM scheme with CR at 8 dB, the bit error rate(BER) of the system can be reduced from 0.003 7 to 0.000 287.