通过一维杆的一维传热的分组显式数值求解,分析热弹性效应的存在及规律,得出随着时间的增长,温升—热变形之间的关系会逐渐趋近稳态,但不可能获得绝对的稳态;在传热过程中,随着距离增加,温度衰减很快,离热源越远的点的热弹性效环应越窄...通过一维杆的一维传热的分组显式数值求解,分析热弹性效应的存在及规律,得出随着时间的增长,温升—热变形之间的关系会逐渐趋近稳态,但不可能获得绝对的稳态;在传热过程中,随着距离增加,温度衰减很快,离热源越远的点的热弹性效环应越窄。提出用非线性时序模型与前向神经网络相结合的模型(Nonlinear auto-regressive moving average neural network with exogenousinputs,NARMAX-NN)来辨识热弹性效应。用NARMAX-NN模型对高速进给系统试验台的热动态特性进行建模,获得良好的效果。此方法比多变量回归模型、反馈神经网络模型及广义最小二乘输出误差模型有更好的精度和鲁棒性,能精确地对复杂结构、多热源的时变非线性热误差特性进行建模和预测。展开更多
文摘通过一维杆的一维传热的分组显式数值求解,分析热弹性效应的存在及规律,得出随着时间的增长,温升—热变形之间的关系会逐渐趋近稳态,但不可能获得绝对的稳态;在传热过程中,随着距离增加,温度衰减很快,离热源越远的点的热弹性效环应越窄。提出用非线性时序模型与前向神经网络相结合的模型(Nonlinear auto-regressive moving average neural network with exogenousinputs,NARMAX-NN)来辨识热弹性效应。用NARMAX-NN模型对高速进给系统试验台的热动态特性进行建模,获得良好的效果。此方法比多变量回归模型、反馈神经网络模型及广义最小二乘输出误差模型有更好的精度和鲁棒性,能精确地对复杂结构、多热源的时变非线性热误差特性进行建模和预测。
文摘南极Dome A(冰穹A)因其优良的观测条件被誉为地球上最好的天文观测台址之一。Dome A温度常年处于-30^-80℃,相对湿度40%~80%,温度起伏大,望远镜镜面易结霜,影响天文观测的效率和质量。为实现无人值守的智能化镜面除霜、减少除霜对观测时间的占用、降低除霜对镜面视宁度的影响、减少除霜对能源的消耗,提出了智能化除霜方法。首先,分析环境、科学数据、仪器三者的关系,利用外部输入非线性自回归(nonlinear auto regressive models with exogenous input,NARX)时间序列神经网络构建望远镜镜面状态的预测模型;其次,设计南极望远镜智能化除霜仿真系统,实时预测镜面情况,根据预测结果模拟采取相应的应对措施。结果表明该方法能有效实现智能化除霜,减少了人为干预,节约了观测时间,提高了望远镜运行的可靠性。