期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Quantifying the thermal damping effect in underground vertical shafts using the nonlinear autoregressive with external input(NARX) algorithm 被引量:9
1
作者 Pedram Roghanchi Karoly C.Kocsis 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第2期255-262,共8页
As air descends the intake shaft, its infrastructure, lining and the strata will emit heat during the night when the intake air is cool and, on the contrary, will absorb heat during the day when the temperature of the... As air descends the intake shaft, its infrastructure, lining and the strata will emit heat during the night when the intake air is cool and, on the contrary, will absorb heat during the day when the temperature of the air becomes greater than that of the strata. This cyclic phenomenon, also known as the "thermal damping effect" will continue throughout the year reducing the effect of surface air temperature variation. The objective of this paper is to quantify the thermal damping effect in vertical underground airways. A nonlinear autoregressive time series with external input(NARX) algorithm was used as a novel method to predict the dry-bulb temperature(Td) at the bottom of intake shafts as a function of surface air temperature. Analyses demonstrated that the artificial neural network(ANN) model could accurately predict the temperature at the bottom of a shaft. Furthermore, an attempt was made to quantify typical "damping coefficient" for both production and ventilation shafts through simple linear regression models. Comparisons between the collected climatic data and the regression-based predictions show that a simple linear regression model provides an acceptable accuracy when predicting the Tdat the bottom of intake shafts. 展开更多
关键词 UNDERGROUND mining Vertical openings THERMAL damping effect Artificial neural network nonlinear autoregressive with EXTERNAL input(narx)
下载PDF
基于PSO-NARX网络的司机驾驶行为分析方法
2
作者 王心仪 程剑锋 易海旺 《铁道学报》 EI CAS CSCD 北大核心 2024年第9期94-101,共8页
舒适性、准时性、节能性等是衡量高速铁路自动驾驶水平的重要指标,通过不断学习优秀司机的驾驶行为,可以优化列车自动驾驶性能,促进高速铁路自动驾驶技术的发展。基于现场列车运行数据,提出一种带有外部输入的非线性自回归(NARX)网络的... 舒适性、准时性、节能性等是衡量高速铁路自动驾驶水平的重要指标,通过不断学习优秀司机的驾驶行为,可以优化列车自动驾驶性能,促进高速铁路自动驾驶技术的发展。基于现场列车运行数据,提出一种带有外部输入的非线性自回归(NARX)网络的列车司机驾驶行为分析方法。该方法构建了具有时序特征的NARX网络模型,并选取多项影响司机决策的参数作为输入,利用粒子群优化算法(PSO)确定网络的权重和阈值,对下一时刻列车运行情况进行预测。仿真结果表明:本文提出的PSO-NARX网络分析模型的预测效果优于前馈型神经网络(BP)、PSO-BP、NARX,相比于BP算法,迭代步数降低了373步,误差降低了8382%,相关系数达到了90117%。通过此预测,可以优化列车的自动驾驶设备性能指标,保障列车准时的同时,提高了乘客乘坐的舒适性。 展开更多
关键词 高速铁路 非线性自回归神经网络 粒子群优化算法 驾驶行为 辨识
下载PDF
基于NARX神经网络的轮重减载率预测方法 被引量:2
3
作者 潘丽莎 程晓卿 +2 位作者 秦勇 陈浩 邢宗义 《城市轨道交通研究》 北大核心 2012年第8期59-62,共4页
介绍了一种基于神经网络的轮重减载率预测方法。以左轨轨向不平顺、右轨轨向不平顺、左轨高低不平顺、右轨高低不平顺为输入,以轮重减载率为输出,采用贝叶斯正则化算法构建了NARX(外部输入非线性自回归神经网络)。仿真试验结果及与BP神... 介绍了一种基于神经网络的轮重减载率预测方法。以左轨轨向不平顺、右轨轨向不平顺、左轨高低不平顺、右轨高低不平顺为输入,以轮重减载率为输出,采用贝叶斯正则化算法构建了NARX(外部输入非线性自回归神经网络)。仿真试验结果及与BP神经网络的比较表明,采用NARX实现轮重减载率预测是可行而有效的。NARX比BP神经网络更适用于减载率预测。 展开更多
关键词 车辆 轮重减载率 神经网络 narx
下载PDF
EMD与NARX神经网络的风电场总功率组合预测 被引量:6
4
作者 张振华 马超 +1 位作者 徐瑾辉 欧阳泽拯 《计算机工程与应用》 CSCD 北大核心 2016年第12期265-270,共6页
探索构建对风电场总功率进行直接预测的高精度组合预测算法。考虑到风速的非平稳性导致风电总功率表现为非平稳时间序列,采用NARX神经网络作为初步预测模型,提出了经验模态分解与NARX神经网络相结合的混合预测模型。对风电场总功率非平... 探索构建对风电场总功率进行直接预测的高精度组合预测算法。考虑到风速的非平稳性导致风电总功率表现为非平稳时间序列,采用NARX神经网络作为初步预测模型,提出了经验模态分解与NARX神经网络相结合的混合预测模型。对风电场总功率非平稳时间序列进行经验模态分解,得到不同频带本征模式分量的平稳序列。对不同频带的平稳分量建立相应的NARX神经网络预测模型,并将各分量模型的预测值进行等权求和得到最终预测值。此外,为研究不同时间间隔对预测结果的影响,采用某大型风电场时间间隔为5 min与15 min的数据进行实验。预测结果表明,提出的组合预测模型适合于总功率预测,其预测效果比传统模型的效果更佳,且时间间隔为5 min的数据比时间间隔为15 min的数据预测精度更高。 展开更多
关键词 经验模态分解 非线性自回归神经网络(带外部输入的)(narx) 非平稳时间序列 风电场 总功率
下载PDF
基于MI-Granger-NARX融合模型的铁路网规模测算方法 被引量:3
5
作者 钱名军 李引珍 +1 位作者 何瑞春 曾海军 《铁道学报》 EI CAS CSCD 北大核心 2021年第1期28-38,共11页
铁路网的建设进程应与经济社会发展保持适度匹配,其路网规模受人口资源、经济社会、交通政策和运营组织等因素影响,具有动态、时滞、非线性的复杂特征。首先,在不依赖先验信息的情况下,运用互信息法对人均GDP、全社会货运量、旅客周转量... 铁路网的建设进程应与经济社会发展保持适度匹配,其路网规模受人口资源、经济社会、交通政策和运营组织等因素影响,具有动态、时滞、非线性的复杂特征。首先,在不依赖先验信息的情况下,运用互信息法对人均GDP、全社会货运量、旅客周转量等12项影响铁路网规模的指标进行互信息计算。接着,运用Granger因果检验对初选指标进一步筛选,获得7项最具解释力的指标。然后,利用NARX良好的学习记忆与延迟反馈功能构建测算模型,以筛选所得7项指标作为自变量输入、铁路网里程序列作为因变量自回归输入测算铁路网里程。最后,将本模型与传统BP、NAR和单一NARX等神经网络模型的测算结果进行验证、对比。结果表明本模型解释能力更强、泛化能力更好和结果精度更高。 展开更多
关键词 铁路网规模 互信息 GRANGER因果关系检验 narx 多元时间序列预测
下载PDF
基于NARX神经网络的光伏发电功率预测研究 被引量:12
6
作者 付青 单英浩 朱昌亚 《电气传动》 北大核心 2016年第4期42-45,共4页
为了较准确地预测光伏发电系统的发电功率,建立了动态神经网络预测模型。该模型采用有外部输入的非线性自回归神经网络(NARX)结构,考虑太阳能辐射量和电池板温度对光伏发电功率的影响,利用NARX神经网络强大的非线性映射和泛化能力,进行... 为了较准确地预测光伏发电系统的发电功率,建立了动态神经网络预测模型。该模型采用有外部输入的非线性自回归神经网络(NARX)结构,考虑太阳能辐射量和电池板温度对光伏发电功率的影响,利用NARX神经网络强大的非线性映射和泛化能力,进行了发电功率的预测。结果表明,利用NARX神经网络预测光伏发电功率是可行的,并且与传统BP神经网络相比,具有良好的适应性和预测精度。 展开更多
关键词 光伏系统 有外部输入的非线性自回归 神经网络 发电功率预测
下载PDF
可重构功放的新颖NARX神经网络逆向建模研究
7
作者 南敬昌 臧净 +1 位作者 高明明 胡婷婷 《微波学报》 CSCD 北大核心 2019年第5期51-56,共6页
针对使用CAD软件设计射频微波电路繁琐且耗时长等缺点,提出一种新颖的带外部输入的非线性自回归(NARX)神经网络逆向建模方法。此方法采用具有激励函数的NARX神经网络(DAFNN)为模型以提高网络的泛化能力,利用支持向量机(SVM)替代模型的... 针对使用CAD软件设计射频微波电路繁琐且耗时长等缺点,提出一种新颖的带外部输入的非线性自回归(NARX)神经网络逆向建模方法。此方法采用具有激励函数的NARX神经网络(DAFNN)为模型以提高网络的泛化能力,利用支持向量机(SVM)替代模型的前馈部分完成数据分类,解决设计中的多解问题。然后应用于可以覆盖多个频段的可重构功率放大器中,实验表明,该方法在精度方面分别优于直接逆向建模方法和自适应η逆向建模方法99.86%和81.32%,计算速度方面优于直接逆向建模方法31.72%,可以降低射频微波可重构功率放大器的设计复杂度、缩短其设计时间。 展开更多
关键词 带外部输入的非线性自回归(narx)神经网络 逆向建模 DAFNN神经元模型 支持向量机 可重构功率放大器
下载PDF
基于NARX神经网络的热负荷预测中关键影响因素分析 被引量:9
8
作者 谢吉洋 闫冬 +1 位作者 谢垚 马占宇 《计算机应用》 CSCD 北大核心 2018年第11期3180-3187,共8页
在区域供热(DH)网络中,精确预测热负荷已被认为是提高效率和节省成本的重要环节。为了提高预测精度,研究不同影响因素对热负荷预测的影响极为重要。使用引入不同影响因素的数据集训练得到带外部输入的非线性自回归(NARX)神经网络模型,... 在区域供热(DH)网络中,精确预测热负荷已被认为是提高效率和节省成本的重要环节。为了提高预测精度,研究不同影响因素对热负荷预测的影响极为重要。使用引入不同影响因素的数据集训练得到带外部输入的非线性自回归(NARX)神经网络模型,并比较其预测性能,以讨论直接太阳辐射和风速对热负荷预测的影响程度。实验结果表明,直接太阳辐射和风速都是热负荷预测中的关键影响因素。只引入风速时,预测模型的平均绝对百分比误差(MAPE)和均方根误差(RMSE)均低于只引入直接太阳辐射,同时引入风速和直接太阳辐射能够得到最佳的模型预测性能,但是对于MAPE和RMSE降低的贡献不大。 展开更多
关键词 区域供热 热负荷预测 非线性自回归神经网络 直接太阳辐射 风速
下载PDF
基于NARX神经网络模型的船舶市场预测研究 被引量:4
9
作者 樊乙澄 蒋元涛 《物流科技》 2012年第7期15-18,共4页
船舶市场的未来需求一直是船厂和船东关注的焦点。为使船舶制造企业能够积极面对未来市场的发展与变化,文章利用NARX自回归反馈网络对船舶市场进行短期预测。此法提高了对船舶市场预测的准确度及合理性,解决了目前由于经济环境复杂且资... 船舶市场的未来需求一直是船厂和船东关注的焦点。为使船舶制造企业能够积极面对未来市场的发展与变化,文章利用NARX自回归反馈网络对船舶市场进行短期预测。此法提高了对船舶市场预测的准确度及合理性,解决了目前由于经济环境复杂且资料有限而无法进行完全合理有效的预测的问题,以期对我国船舶市场的发展提供借鉴与参考。 展开更多
关键词 船舶市场 narx非线性自回归网络 预测模型 数据处理
下载PDF
Random dynamic analysis of vertical train–bridge systems under small probability by surrogate model and subset simulation with splitting 被引量:11
10
作者 Huoyue Xiang Ping Tang +1 位作者 Yuan Zhang Yongle Li 《Railway Engineering Science》 2020年第3期305-315,共11页
The response of the train–bridge system has an obvious random behavior.A high traffic density and a long maintenance period of a track will result in a substantial increase in the number of trains running on a bridge... The response of the train–bridge system has an obvious random behavior.A high traffic density and a long maintenance period of a track will result in a substantial increase in the number of trains running on a bridge,and there is small likelihood that the maximum responses of the train and bridge happen in the total maintenance period of the track.Firstly,the coupling model of train–bridge systems is reviewed.Then,an ensemble method is presented,which can estimate the small probabilities of a dynamic system with stochastic excitations.The main idea of the ensemble method is to use the NARX(nonlinear autoregressive with exogenous input)model to replace the physical model and apply subset simulation with splitting to obtain the extreme distribution.Finally,the efficiency of the suggested method is compared with the direct Monte Carlo simulation method,and the probability exceedance of train responses under the vertical track irregularity is discussed.The results show that when the small probability of train responses under vertical track irregularity is estimated,the ensemble method can reduce both the calculation time of a single sample and the required number of samples. 展开更多
关键词 Train–bridge system Ensemble method Surrogate model nonlinear autoregressive with exogenous input Subset simulation with splitting Small probability
下载PDF
基于NARX的SI发动机空燃比非线性模型预测控制
11
作者 赵谨 石屹然 石要武 《吉林大学学报(信息科学版)》 CAS 2016年第2期218-228,共11页
针对SI(Spark Ignition)发动机空燃比(AFR:Air-Fuel Ratio)控制精度低、无法自适应等问题,提出了基于NARX(Nonlinear Auto Regressive model with e Xogenous inputs)模型的非线性模型预测控制(NMPC:Nonlinear Model Predict Control)... 针对SI(Spark Ignition)发动机空燃比(AFR:Air-Fuel Ratio)控制精度低、无法自适应等问题,提出了基于NARX(Nonlinear Auto Regressive model with e Xogenous inputs)模型的非线性模型预测控制(NMPC:Nonlinear Model Predict Control)方法。利用渐消记忆递推最小二乘(RLS:Recursive Least Squares)算法对NARX模型进行辨识,基于NARX模型对SI发动机的AFR进行非线性模型预测控制。该方法辨识精度高,可通过NARX模型数学结构直接计算最优控制序列,从而提高系统的控制精度。同时,采用Matlab对均值发动机模型(MVEM:Mean Value Engine Model)进行仿真实验,并与采用Volterra模型的PI(Proportional Integral)控制器算法进行对比。仿真结果证明,该算法控制效果比基于Volterra模型和传统的PI控制器的控制效果超调量小,调节时间短,更加具有工程实际应用性。 展开更多
关键词 narx模型 模型辨识 非线性模型预测控制 空燃比
下载PDF
Tool Condition Monitoring Based on Nonlinear Output Frequency Response Functions and Multivariate Control Chart
12
作者 Yufei Gui Ziqiang Lang +1 位作者 Zepeng Liu Hatim Laalej 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第4期243-251,共9页
Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significa... Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications. 展开更多
关键词 intelligent manufacturing multivariate control chart nonlinear autoregressive with exogenous Input modelling nonlinear Output Frequency Response Functions tool condition monitoring
下载PDF
基于改进小波神经网络的光伏发电系统非线性模型辨识 被引量:12
13
作者 郑凌蔚 刘士荣 谢小高 《电网技术》 EI CSCD 北大核心 2011年第10期159-164,共6页
将光伏发电系统看成基于气象参数的非线性黑箱模型,用非线性自回归外推模型对不同天气条件下的光伏发电系统进行辨识。采用了对系统维数不敏感的基于方差分析展开的改进小波神经网络对系统进行非线性自回归外推模型辨识,辨识数据和验证... 将光伏发电系统看成基于气象参数的非线性黑箱模型,用非线性自回归外推模型对不同天气条件下的光伏发电系统进行辨识。采用了对系统维数不敏感的基于方差分析展开的改进小波神经网络对系统进行非线性自回归外推模型辨识,辨识数据和验证数据均取自实际光伏发电系统。实例研究结果表明:与Sigmoid网络函数法、树分割法及基本小波神经网络法相比,基于改进小波神经网络的非线性自回归外推模型能更好地反应各种不同天气条件下光伏发电系统的动态行为;天气波动的剧烈程度对辨识效果影响较大。 展开更多
关键词 光伏发电系统 非线性自回归外推 模型辨识 进小波神经网络 方差分析
下载PDF
热弹性效应分析与机床进给系统热动态特性建模 被引量:20
14
作者 夏军勇 胡友民 +1 位作者 吴波 史铁林 《机械工程学报》 EI CAS CSCD 北大核心 2010年第15期191-198,共8页
通过一维杆的一维传热的分组显式数值求解,分析热弹性效应的存在及规律,得出随着时间的增长,温升—热变形之间的关系会逐渐趋近稳态,但不可能获得绝对的稳态;在传热过程中,随着距离增加,温度衰减很快,离热源越远的点的热弹性效环应越窄... 通过一维杆的一维传热的分组显式数值求解,分析热弹性效应的存在及规律,得出随着时间的增长,温升—热变形之间的关系会逐渐趋近稳态,但不可能获得绝对的稳态;在传热过程中,随着距离增加,温度衰减很快,离热源越远的点的热弹性效环应越窄。提出用非线性时序模型与前向神经网络相结合的模型(Nonlinear auto-regressive moving average neural network with exogenousinputs,NARMAX-NN)来辨识热弹性效应。用NARMAX-NN模型对高速进给系统试验台的热动态特性进行建模,获得良好的效果。此方法比多变量回归模型、反馈神经网络模型及广义最小二乘输出误差模型有更好的精度和鲁棒性,能精确地对复杂结构、多热源的时变非线性热误差特性进行建模和预测。 展开更多
关键词 热弹性效应 非线性时序神经网络模型 进给系统 系统辨识 热误差建模
下载PDF
基于履带车辆车体动态响应的行驶路面不平度识别 被引量:3
15
作者 凌启辉 戴巨川 +3 位作者 陈盛钊 孙飞鹰 汪国胜 廖力力 《中国机械工程》 EI CAS CSCD 北大核心 2022年第1期62-69,共8页
建立了基于履带车辆车体动态响应的行驶路面不平度识别的模型。该模型采用带外源输入的非线性自回归神经网络结构,以履带车辆车体动态响应为输入、路面不平度为输出。将相关性系数、均方根误差和绝对误差累计概率密度作为识别效果的评... 建立了基于履带车辆车体动态响应的行驶路面不平度识别的模型。该模型采用带外源输入的非线性自回归神经网络结构,以履带车辆车体动态响应为输入、路面不平度为输出。将相关性系数、均方根误差和绝对误差累计概率密度作为识别效果的评价指标,并给出了上述三个指标的融合方法。基于正交试验设计的思路分析并实现了路面不平度识别模型输入数量和识别效果的平衡,简化了测试系统传感器的布置。分析了不同的路面、采样频率和车速下的路面不平度识别效果。结果表明,提出的不平度识别方法满足工程实际需求。 展开更多
关键词 履带车辆 路面不平度识别 动态响应 带外源输入的非线性自回归神经网络
下载PDF
基于非线性多参数模型的软件老化检测 被引量:3
16
作者 苏莉 齐勇 +1 位作者 金玲玲 张广路 《计算机科学》 CSCD 北大核心 2013年第1期161-165,170,共6页
提出了一种软件系统的非线性有源自回归(Nonlinear AutoRegressive models with eXogenous Inputs,NARX)网络模型的老化检测方法。解决了目前软件老化方法未考虑多变量间关联性及历史数据的延迟影响的问题。该方法首先通过对实验采集的H... 提出了一种软件系统的非线性有源自回归(Nonlinear AutoRegressive models with eXogenous Inputs,NARX)网络模型的老化检测方法。解决了目前软件老化方法未考虑多变量间关联性及历史数据的延迟影响的问题。该方法首先通过对实验采集的HelixServer-VOD服务器性能数据进行主成分分析,确定网络的输入维数,根据AIC准则确定最佳模型阶数,最终选取合理的网络模型结构;使用已知的未老化状态样本对NARX网络进行训练,建立系统的辨识模型;然后运用序贯概率比检验(Sequential Probability Ratio Test,SPRT)对NARX辨识模型的残差进行假设检验,判断系统的老化状态。实验分析表明,基于NARX网络模型的故障检测方法能够有效地应用于软件老化的检测。 展开更多
关键词 软件老化 非线性有源自回归网络模型 HelixServer 序贯概率比检验
下载PDF
电磁发射系统监测量预测方法 被引量:3
17
作者 腾腾 赵治华 《电工技术学报》 EI CSCD 北大核心 2018年第22期5233-5243,共11页
对设备监测量的数值预测是进行故障预测与健康管理(PHM)研究的重要环节之一。以电磁发射系统中分段供电直线电机的定子温度为例,分别基于自回归积分滑动平均(ARIMA)模型、卡尔曼滤波模型、反向传播(BP)神经网络模型和一种新的以工况信... 对设备监测量的数值预测是进行故障预测与健康管理(PHM)研究的重要环节之一。以电磁发射系统中分段供电直线电机的定子温度为例,分别基于自回归积分滑动平均(ARIMA)模型、卡尔曼滤波模型、反向传播(BP)神经网络模型和一种新的以工况信息为外部输入的非线性自回归神经网络(NARX)模型,实现了对定子温度多时间尺度的预测。ARIMA模型为其他三种模型提供了时序数据分析时确定阶数的依据。在不同于训练数据集的试验数据上应用四种预测模型,比较和分析了四种方法得到的多时间尺度预测结果:对于不超过1min的短时温度预测,四种方法都具有较好的效果;对于1~4min的中长时间预测,引入工况信息的NARX神经网络方法具有优势。四种方法对分段供电直线电机定子温度预测都不具有超过4min的预测能力。 展开更多
关键词 电磁发射系统 分段供电直线电机 监测量预测 含外部输入的非线性自回归神经网络 工况信息
下载PDF
基于KELM的连续搅拌反应釜模型辨识 被引量:4
18
作者 李军 石青 《控制工程》 CSCD 北大核心 2017年第10期2137-2143,共7页
极限学习机(Extreme learning machine,ELM)是一种单隐层前馈神经网络(SLFNs),它随机选择网络的隐含层节点及其参数,训练时仅需调节输出层权值,因此ELM以极快的学习速度获得良好的推广性。考虑到ELM的特征映射函数未知时,可以将核矩阵... 极限学习机(Extreme learning machine,ELM)是一种单隐层前馈神经网络(SLFNs),它随机选择网络的隐含层节点及其参数,训练时仅需调节输出层权值,因此ELM以极快的学习速度获得良好的推广性。考虑到ELM的特征映射函数未知时,可以将核矩阵引入到ELM中。针对模型未知的强非线性连续搅拌反应釜(Continuous Stirred Tank Reactor,CSTR),提出一种基于核极限学习机(Extreme Learning Machine with Kernels,KELM)的NARX模型辨识方法。以仿真的CSTR过程实例进行辨识实验,建立基于NARX-KELM的辨识模型。实验结果表明,在相同条件下,与带动量因子的BP神经网络、模糊神经网络(FNN)、GAP-RBF、MGAP-RBF神经网络、回声状态网络(ESN)、ELM等方法相比,KELM能够有效地改进辨识精度,而且性能更好,这表明了所提方法的有效性和应用潜力。 展开更多
关键词 核极限学习机 单隐层前馈神经网络 连续搅拌反应釜 narx模型 辨识
下载PDF
基于非线性自适应回归神经网络的GPS/IMU组合导航方法 被引量:15
19
作者 邓天民 杨其芝 +1 位作者 方芳 岳云霞 《科学技术与工程》 北大核心 2019年第24期274-280,共7页
车道级高精度定位导航是智能网联汽车的基本配置,全球定位系统(globlal positioning system,GPS)/惯性测量单元(inertial meansurement unit,IMU)组合导航是高精度定位的关键技术之一。根据汽车行驶过程中高精度定位要求,提出了应用于... 车道级高精度定位导航是智能网联汽车的基本配置,全球定位系统(globlal positioning system,GPS)/惯性测量单元(inertial meansurement unit,IMU)组合导航是高精度定位的关键技术之一。根据汽车行驶过程中高精度定位要求,提出了应用于智能网联汽车的基于非线性自适应回归(nonlinear autoregressive exogenous,NARX)神经网络的GPS/IMU组合导航方法。首先,根据IMU传感器数据特性,建立了基于扩展卡尔曼滤波的惯性导航系统(inertial navigation system,INS)模型,其次,基于NARX神经网络,建立了GPS/INS组合定位训练和预测模型,然后,基于全球导航卫星系统(global navigation satellite system,GNSS)、实时动态差分技术(real-time kinematic,RTK)、INS等技术,设计了智能网联汽车RTK高精度定位数据采集实验系统,并收集了实验数据。最后,对NARX网络训练误差和GNSS信号长时间失效情况下定位预测误差进行了讨论与分析。实验结果表明,该方法在GNSS信号失效5 min情况下,定位预测误差在2.5 m以内,满足一般情况下,短、中、长隧道中智能网联汽车定位应用要求。 展开更多
关键词 智能网联汽车 车道级定位 非线性自适应回归神经网络 扩展卡尔曼滤波
下载PDF
基于XGBoost的溶解氧预测模型研究 被引量:5
20
作者 袁红春 毛瑞 +2 位作者 杨蒙召 张天蛟 黄俊豪 《传感器与微系统》 CSCD 2020年第10期51-53,57,共4页
为了提高溶解氧的预测精度,以水产品溯源与安全预警平台的监测数据为基础,提出一种基于XGBoost模型的水质参数预测方法,并与LSTM和PCA-NARX网络预测模型进行48h内的溶解氧预测对比。仿真结果表明:通过XGBoost模型预测的结果均方根误差(R... 为了提高溶解氧的预测精度,以水产品溯源与安全预警平台的监测数据为基础,提出一种基于XGBoost模型的水质参数预测方法,并与LSTM和PCA-NARX网络预测模型进行48h内的溶解氧预测对比。仿真结果表明:通过XGBoost模型预测的结果均方根误差(RMSE)最小,在24 h和48 h内的泛化能力均高于LSTM和PCA-NARX模型。 展开更多
关键词 水质参数 XGBoost模型 长短时记忆(LSTM)神经网络 PCA-narx神经网络
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部