The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundar...The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.展开更多
In the present paper, an equation of nonlinear chromatography is derived from the physical chemistry A recursion formula of the symmetries of the equation as well as an infinite number of symmetries is found. A series...In the present paper, an equation of nonlinear chromatography is derived from the physical chemistry A recursion formula of the symmetries of the equation as well as an infinite number of symmetries is found. A series of Backlund transformations of the equation are constructed by means of the symmetries. The exact solutions of two boundary-initial value problems on the half straight line for the equation are given m terms of the solutions of the corresponding linear problems.展开更多
With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for th...With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given.展开更多
In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solu...In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solution is proved and the uniformly valid asymptotic expansions is obtained as well.展开更多
Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1...Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.展开更多
In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower soluti...In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower solutions. Our results improve someknown works.展开更多
In this paper, the existence and uniqueness theorems of solutions of k-point boundary value problems for nth-order nonlinear differential equations are established by Leray-Schauder continuation theorem.
The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the o...The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the oblique derivative problem are given, and then by the above estimates and the method of parameter extension, the existence of solutions of the above problem is proved. In this article, the complex analytic method is used, namely the corresponding problem for degenerate elliptic complex equations of first order is firstly discussed, afterwards the above problem for the degenerate elliptic equations of second order is solved.展开更多
A high-precision and space-time fully decoupled numerical method is developed for a class of nonlinear initial boundary value problems. It is established based on a proposed Coiflet-based approximation scheme with an ...A high-precision and space-time fully decoupled numerical method is developed for a class of nonlinear initial boundary value problems. It is established based on a proposed Coiflet-based approximation scheme with an adjustable high order for the functions over a bounded interval, which allows the expansion coefficients to be explicitly expressed by the function values at a series of single points. When the solution method is used, the nonlinear initial boundary value problems are first spatially discretized into a series of nonlinear initial value problems by combining the proposed wavelet approximation and the conventional Galerkin method, and a novel high-order step-by-step time integrating approach is then developed for the resulting nonlinear initial value problems with the same function approximation scheme based on the wavelet theory. The solution method is shown to have the N th-order accuracy, as long as the Coiflet with [0, 3 N-1]compact support is adopted, where N can be any positive even number. Typical examples in mechanics are considered to justify the accuracy and efficiency of the method.展开更多
A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, ...A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.展开更多
In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by me...In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.展开更多
1. Introduction We consider the singular nonlinear boundary value problem where l=v+3/v-1,l+1 is the critical exponent of the embedding of weighted Sobolev space Wt21,2(O, +∞) into Lt2q(O, ∞), v>2. When v=N-1...1. Introduction We consider the singular nonlinear boundary value problem where l=v+3/v-1,l+1 is the critical exponent of the embedding of weighted Sobolev space Wt21,2(O, +∞) into Lt2q(O, ∞), v>2. When v=N-1 we can get the radial solutions of problem where 2*=2N/N-2 is the critical exponent of the Sobolev embedding H1(Rn)→LQ(RN). Kurtz has discussed the existence of κ-node solution of (1.1), (1.2) for each κ∈N U{0} when the growth rate of |u|l-1u+f(u) is lower then |u|v+3/v-1 i.e.展开更多
In this paper, we establish the existence of positive solutions of (|y'| p-2g' )'+f(t,y)= 0 (P>1 ). y (0)=y (1) = 0. The function f is allowed to be singular when y= 0.
In this paper nonlinear boundary value problems for discontinuous delayed differen- tial equations are considered. Some existence and boundedness results of solutions are obtained via the method of upper and lower sol...In this paper nonlinear boundary value problems for discontinuous delayed differen- tial equations are considered. Some existence and boundedness results of solutions are obtained via the method of upper and lower solutions, which may be discontinuous. Our analysis can be applied to those phenomena from physics and control theory which have been successfully described by delayed differential equations with discontinuous functions, such as electric, pneu- matic, and hydraulic networks. It is also an important step to precede the design of control signals when finite-time or practical stability control are concerned.展开更多
In this paper, a class of strongly non linear generalised Riemann Hilbert problems for second order elliptic system is studied. By means of the theory of integral equations and using an explicit form of the solutio...In this paper, a class of strongly non linear generalised Riemann Hilbert problems for second order elliptic system is studied. By means of the theory of integral equations and using an explicit form of the solution, a reduction is made to a nonlinear boundary value problem for two holomorphic functions. And using an approximation dealing with a solvable perturbed problems and suitable prior estimates, we prove that the problems possess solution in Hardy class, the solution w(z) belongs to W 1 2()∩W 2 p(G),p>2 .展开更多
In this paper, it has been studied that the singular perturbations for the higherorder nonlinear boundary value problem of the formε2y(n)=f(t, ε, y. '', y(n-2))pj(ε)y(1)(0, ε)-qj(ε)y(j+1)(0. ε)=Aj(ε) (0...In this paper, it has been studied that the singular perturbations for the higherorder nonlinear boundary value problem of the formε2y(n)=f(t, ε, y. '', y(n-2))pj(ε)y(1)(0, ε)-qj(ε)y(j+1)(0. ε)=Aj(ε) (0≤j≤n-3)a1(ε)u(n-2)(0.ε)-a2(ε)y(n-1)(0, ε)=B(ε)b1(ε)y(n-2)(1, ε)+b2(ε)y(n-1),(1. ε)=C(ε)by the method of higher order differential inequalities and boundary layer corrections.Under some mild conditions, the existence of the perturbed solution is proved and itsuniformly efficient asymptotic expansions up to its n-th order derivative function aregiven out. Hence, the existing results are extended and improved.展开更多
In this paper.the author uses the methods in [1,2] to study the existence of solutiojns of three point boundary value problems for nonlinear fourth order differentialequation.
The wavelet multiresolution interpolation for continuous functions defined on a finite interval is developed in this study by using a simple alternative of transformation matrix.The wavelet multiresolution interpolati...The wavelet multiresolution interpolation for continuous functions defined on a finite interval is developed in this study by using a simple alternative of transformation matrix.The wavelet multiresolution interpolation Galerkin method that applies this interpolation to represent the unknown function and nonlinear terms independently is proposed to solve the boundary value problems with the mixed Dirichlet-Robin boundary conditions and various nonlinearities,including transcendental ones,in which the discretization process is as simple as that in solving linear problems,and only common two-term connection coefficients are needed.All matrices are independent of unknown node values and lead to high efficiency in the calculation of the residual and Jacobian matrices needed in Newton’s method,which does not require numerical integration in the resulting nonlinear discrete system.The validity of the proposed method is examined through several nonlinear problems with interior or boundary layers.The results demonstrate that the proposed wavelet method shows excellent accuracy and stability against nonuniform grids,and high resolution of localized steep gradients can be achieved by using local refined multiresolution grids.In addition,Newton’s method converges rapidly in solving the nonlinear discrete system created by the proposed wavelet method,including the initial guess far from real solutions.展开更多
In this paper the existence of solutions of the singularly perturbed boundary value problems on infinite interval for the second order nonlinear equation containing a small parameterε>0,εy'=f(x,y,y'),y...In this paper the existence of solutions of the singularly perturbed boundary value problems on infinite interval for the second order nonlinear equation containing a small parameterε>0,εy'=f(x,y,y'),y'(0)=a,y(∞)=βis examined,where are constants,and i=0,1.Moreover,asymptotic estimates of the solutions for the above problems are given.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 12002195)the National Science Fund for Distinguished Young Scholars (No. 12025204)the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018)。
文摘The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.
文摘In the present paper, an equation of nonlinear chromatography is derived from the physical chemistry A recursion formula of the symmetries of the equation as well as an infinite number of symmetries is found. A series of Backlund transformations of the equation are constructed by means of the symmetries. The exact solutions of two boundary-initial value problems on the half straight line for the equation are given m terms of the solutions of the corresponding linear problems.
基金Natural Science Foundation of Gansu Province of China
文摘With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given.
基金Supported by the Natural Science Foundation of Zhejiang Provivce (102009)Supported by the Natural Foundation of Huzhou Teacher's College(200302)
文摘In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solution is proved and the uniformly valid asymptotic expansions is obtained as well.
文摘Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.
文摘In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower solutions. Our results improve someknown works.
文摘In this paper, the existence and uniqueness theorems of solutions of k-point boundary value problems for nth-order nonlinear differential equations are established by Leray-Schauder continuation theorem.
文摘The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the oblique derivative problem are given, and then by the above estimates and the method of parameter extension, the existence of solutions of the above problem is proved. In this article, the complex analytic method is used, namely the corresponding problem for degenerate elliptic complex equations of first order is firstly discussed, afterwards the above problem for the degenerate elliptic equations of second order is solved.
基金Project supported by the National Natural Science Foundation of China(No.11472119)the Fundamental Research Funds for the Central Universities(No.lzujbky-2017-ot11)the 111 Project(No.B14044)
文摘A high-precision and space-time fully decoupled numerical method is developed for a class of nonlinear initial boundary value problems. It is established based on a proposed Coiflet-based approximation scheme with an adjustable high order for the functions over a bounded interval, which allows the expansion coefficients to be explicitly expressed by the function values at a series of single points. When the solution method is used, the nonlinear initial boundary value problems are first spatially discretized into a series of nonlinear initial value problems by combining the proposed wavelet approximation and the conventional Galerkin method, and a novel high-order step-by-step time integrating approach is then developed for the resulting nonlinear initial value problems with the same function approximation scheme based on the wavelet theory. The solution method is shown to have the N th-order accuracy, as long as the Coiflet with [0, 3 N-1]compact support is adopted, where N can be any positive even number. Typical examples in mechanics are considered to justify the accuracy and efficiency of the method.
文摘A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.
文摘In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.
文摘1. Introduction We consider the singular nonlinear boundary value problem where l=v+3/v-1,l+1 is the critical exponent of the embedding of weighted Sobolev space Wt21,2(O, +∞) into Lt2q(O, ∞), v>2. When v=N-1 we can get the radial solutions of problem where 2*=2N/N-2 is the critical exponent of the Sobolev embedding H1(Rn)→LQ(RN). Kurtz has discussed the existence of κ-node solution of (1.1), (1.2) for each κ∈N U{0} when the growth rate of |u|l-1u+f(u) is lower then |u|v+3/v-1 i.e.
文摘In this paper, we establish the existence of positive solutions of (|y'| p-2g' )'+f(t,y)= 0 (P>1 ). y (0)=y (1) = 0. The function f is allowed to be singular when y= 0.
基金Supported by the National Natural Science Foundation of China(Grants No.70703016 and No.10001024)Research Grant of the Business School of Nanjing University
文摘In this paper nonlinear boundary value problems for discontinuous delayed differen- tial equations are considered. Some existence and boundedness results of solutions are obtained via the method of upper and lower solutions, which may be discontinuous. Our analysis can be applied to those phenomena from physics and control theory which have been successfully described by delayed differential equations with discontinuous functions, such as electric, pneu- matic, and hydraulic networks. It is also an important step to precede the design of control signals when finite-time or practical stability control are concerned.
文摘In this paper, a class of strongly non linear generalised Riemann Hilbert problems for second order elliptic system is studied. By means of the theory of integral equations and using an explicit form of the solution, a reduction is made to a nonlinear boundary value problem for two holomorphic functions. And using an approximation dealing with a solvable perturbed problems and suitable prior estimates, we prove that the problems possess solution in Hardy class, the solution w(z) belongs to W 1 2()∩W 2 p(G),p>2 .
文摘In this paper, it has been studied that the singular perturbations for the higherorder nonlinear boundary value problem of the formε2y(n)=f(t, ε, y. '', y(n-2))pj(ε)y(1)(0, ε)-qj(ε)y(j+1)(0. ε)=Aj(ε) (0≤j≤n-3)a1(ε)u(n-2)(0.ε)-a2(ε)y(n-1)(0, ε)=B(ε)b1(ε)y(n-2)(1, ε)+b2(ε)y(n-1),(1. ε)=C(ε)by the method of higher order differential inequalities and boundary layer corrections.Under some mild conditions, the existence of the perturbed solution is proved and itsuniformly efficient asymptotic expansions up to its n-th order derivative function aregiven out. Hence, the existing results are extended and improved.
文摘In this paper.the author uses the methods in [1,2] to study the existence of solutiojns of three point boundary value problems for nonlinear fourth order differentialequation.
基金supported by the National Natural Science Foundation of China(Nos.12172154 and 11925204)the 111 Project of China(No.B14044)the National Key Project of China(No.GJXM92579)。
文摘The wavelet multiresolution interpolation for continuous functions defined on a finite interval is developed in this study by using a simple alternative of transformation matrix.The wavelet multiresolution interpolation Galerkin method that applies this interpolation to represent the unknown function and nonlinear terms independently is proposed to solve the boundary value problems with the mixed Dirichlet-Robin boundary conditions and various nonlinearities,including transcendental ones,in which the discretization process is as simple as that in solving linear problems,and only common two-term connection coefficients are needed.All matrices are independent of unknown node values and lead to high efficiency in the calculation of the residual and Jacobian matrices needed in Newton’s method,which does not require numerical integration in the resulting nonlinear discrete system.The validity of the proposed method is examined through several nonlinear problems with interior or boundary layers.The results demonstrate that the proposed wavelet method shows excellent accuracy and stability against nonuniform grids,and high resolution of localized steep gradients can be achieved by using local refined multiresolution grids.In addition,Newton’s method converges rapidly in solving the nonlinear discrete system created by the proposed wavelet method,including the initial guess far from real solutions.
文摘In this paper the existence of solutions of the singularly perturbed boundary value problems on infinite interval for the second order nonlinear equation containing a small parameterε>0,εy'=f(x,y,y'),y'(0)=a,y(∞)=βis examined,where are constants,and i=0,1.Moreover,asymptotic estimates of the solutions for the above problems are given.