In this paper, we present a new homotopy method for the nonlinear complementarity problems. Without the regularity or non-singulary assumptions for▽F(x), we prove that our homotopy equations have a bounded solution c...In this paper, we present a new homotopy method for the nonlinear complementarity problems. Without the regularity or non-singulary assumptions for▽F(x), we prove that our homotopy equations have a bounded solution curve. The numerical tests confirm the efficiency of our proposed method.展开更多
A mechanism for proving global convergence in filter-SQP (sequence of quadratic programming) method with the nonlinear complementarity problem (NCP) function is described for constrained nonlinear optimization pro...A mechanism for proving global convergence in filter-SQP (sequence of quadratic programming) method with the nonlinear complementarity problem (NCP) function is described for constrained nonlinear optimization problem.We introduce an NCP function into the filter and construct a new SQP-filter algorithm.Such methods are characterized by their use of the dominance concept of multi-objective optimization,instead of a penalty parameter whose adjustment can be problematic.We prove that the algorithm has global convergence and superlinear convergence rates under some mild conditions.展开更多
In this papert we construct unconstrained methods for the generalized nonlinearcomplementarity problem and variational inequalities. Properties of the correspon-dent unconstrained optimization problem are studied. We ...In this papert we construct unconstrained methods for the generalized nonlinearcomplementarity problem and variational inequalities. Properties of the correspon-dent unconstrained optimization problem are studied. We apply these methods tothe subproblems in trust region method, and study their interrelationships. Nu-merical results are also presented.展开更多
A family of merit functions are proposed, which are the generalization of several existing merit functions. A number of favorable properties of the proposed merit functions are established. By using these properties, ...A family of merit functions are proposed, which are the generalization of several existing merit functions. A number of favorable properties of the proposed merit functions are established. By using these properties, a merit function method for solving nonlinear complementarity problem is investigated, and the global convergence of the proposed algorithm is proved under some standard assumptions. Some preliminary numerical results are given.展开更多
We first propose a new class of smoothing functions for the non- linear complementarity function which contains the well-known Chen-Harker- Kanzow-Smale smoothing function and Huang-Han-Chen smoothing function as spec...We first propose a new class of smoothing functions for the non- linear complementarity function which contains the well-known Chen-Harker- Kanzow-Smale smoothing function and Huang-Han-Chen smoothing function as special cases, and then present a smoothing inexact Newton algorithm for the P0 nonlinear complementarity problem. The global convergence and local superlinear convergence are established. Preliminary numerical results indicate the feasibility and efficiency of the algorithm.展开更多
Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction ...Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints is presented. In particular, a wheeled multi-body system is considered. Here, the state transition of stick-slip between wheel and ground is transformed into a nonlinear complementarity problem (NCP). An iterative algorithm for solving the NCP is then presented using an event-driven method. Dynamical equations of the multi-body system with holonomic and nonholonomic constraints are given using Routh equations and a con- straint stabilization method. Finally, an example is used to test the proposed numerical method. The results show some dynamical behaviors of the wheeled multi-body system and its constraint stabilization effects.展开更多
文摘In this paper, we present a new homotopy method for the nonlinear complementarity problems. Without the regularity or non-singulary assumptions for▽F(x), we prove that our homotopy equations have a bounded solution curve. The numerical tests confirm the efficiency of our proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10571137,10771162)
文摘A mechanism for proving global convergence in filter-SQP (sequence of quadratic programming) method with the nonlinear complementarity problem (NCP) function is described for constrained nonlinear optimization problem.We introduce an NCP function into the filter and construct a new SQP-filter algorithm.Such methods are characterized by their use of the dominance concept of multi-objective optimization,instead of a penalty parameter whose adjustment can be problematic.We prove that the algorithm has global convergence and superlinear convergence rates under some mild conditions.
文摘In this papert we construct unconstrained methods for the generalized nonlinearcomplementarity problem and variational inequalities. Properties of the correspon-dent unconstrained optimization problem are studied. We apply these methods tothe subproblems in trust region method, and study their interrelationships. Nu-merical results are also presented.
基金Supported by the National Natural Science Foundation of China(10871144)the Natural Science Foundation of Tianjin(07JCYBJC05200)
文摘A family of merit functions are proposed, which are the generalization of several existing merit functions. A number of favorable properties of the proposed merit functions are established. By using these properties, a merit function method for solving nonlinear complementarity problem is investigated, and the global convergence of the proposed algorithm is proved under some standard assumptions. Some preliminary numerical results are given.
文摘We first propose a new class of smoothing functions for the non- linear complementarity function which contains the well-known Chen-Harker- Kanzow-Smale smoothing function and Huang-Han-Chen smoothing function as special cases, and then present a smoothing inexact Newton algorithm for the P0 nonlinear complementarity problem. The global convergence and local superlinear convergence are established. Preliminary numerical results indicate the feasibility and efficiency of the algorithm.
基金Project supported by the National Natural Science Foundation of China(Nos.11372018 and 11572018)
文摘Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints is presented. In particular, a wheeled multi-body system is considered. Here, the state transition of stick-slip between wheel and ground is transformed into a nonlinear complementarity problem (NCP). An iterative algorithm for solving the NCP is then presented using an event-driven method. Dynamical equations of the multi-body system with holonomic and nonholonomic constraints are given using Routh equations and a con- straint stabilization method. Finally, an example is used to test the proposed numerical method. The results show some dynamical behaviors of the wheeled multi-body system and its constraint stabilization effects.