In this paper,we analyze the large time behavior of nonnegative solutions to the doubly nonlinear diffusion equation u_(t)−div(|∇u^(m)|^(p−2)∇u^(m))=0 in R^(N)with p>1,m>0 and m(p−1)−1>0.By using the finite p...In this paper,we analyze the large time behavior of nonnegative solutions to the doubly nonlinear diffusion equation u_(t)−div(|∇u^(m)|^(p−2)∇u^(m))=0 in R^(N)with p>1,m>0 and m(p−1)−1>0.By using the finite propagation property and the L^(1)−L^(∞)smoothing effect,we find that the complicated asymptotic behavior of the rescaled solutions t^(μ/2)u(t^(β)⋅,t)for 0<μ<2 N/(N[m(p−1)−1]+p)andβ>(2−μ[m(p−1)−1])/(2 p)can take place.展开更多
基金This research was supported by the NSFC(Grant No.12171166)by the NSF of CQ(Grant No.cstc2019jcyj-msxmX0381)by the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant Nos.KJZD-M202001201,KJZD-M202201202).
文摘In this paper,we analyze the large time behavior of nonnegative solutions to the doubly nonlinear diffusion equation u_(t)−div(|∇u^(m)|^(p−2)∇u^(m))=0 in R^(N)with p>1,m>0 and m(p−1)−1>0.By using the finite propagation property and the L^(1)−L^(∞)smoothing effect,we find that the complicated asymptotic behavior of the rescaled solutions t^(μ/2)u(t^(β)⋅,t)for 0<μ<2 N/(N[m(p−1)−1]+p)andβ>(2−μ[m(p−1)−1])/(2 p)can take place.