Bifurcation of periodic solutions widely existed in nonlinear dynamical systems is a kind oftonstrained one in intrinsic quality because its amplitude is always non-negative Classification of the bifurcations with the...Bifurcation of periodic solutions widely existed in nonlinear dynamical systems is a kind oftonstrained one in intrinsic quality because its amplitude is always non-negative Classification of the bifurcations with the type of constraint was discussed. All its six types of transition sets are derived, in which three types are newly found and a method is proposed for analyzing the constrained bifurcation.展开更多
This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of gua...This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of guaranteeing,under some proper non-restrictive initial conditions,the protection constraints control raised by the distance-to-go(moving authority)curve and automatic train protection in practice.A new hyperbolic tangent function-based model is presented to mimic the whole operation process of high-speed trains.The proposed feedback control methods are easily implementable and computationally inexpensive because the presence of only two feedback gains guarantee satisfactory tracking performance and closed-loop stability,no adaptations of unknown parameters,function approximation of unknown nonlinearities,and attenuation of external disturbances in the proposed control strategies.Finally,rigorous proofs and comparative simulation results are given to demonstrate the effectiveness of the proposed approaches.展开更多
To shed light on the subgrid-seale (SGS) modeling methodology of nonlinear systems such as the Navier-Stokes turbulence, we define the concepts of assumption and restriction in the modeling procedure, which are show...To shed light on the subgrid-seale (SGS) modeling methodology of nonlinear systems such as the Navier-Stokes turbulence, we define the concepts of assumption and restriction in the modeling procedure, which are shown by generalized derivation of three general mathematical constraints for different combinations of restrictions. These constraints are verified numerically in a one-dimensional nonlinear advection equation. This study is expected to inspire future research on the SGS modeling methodology of nonlinear systems.展开更多
An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model stru...An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model structure for a single polymer chain with n tail segments and N reversible entanglement sites on the test polymer chain is developed. Based on the above model structure and the mechanism of molecular flow by the dynamical reorganization of entanglement sites, the probability distribution function of the end-to-end vectr for a single polymer chain at entangled state and the viscoelastic free energy of deformation for polymer melts are calculated by using the method of the stochastically statistical mechanics. The four types of stress-strain relation and the memory function are derived from this thery. The above theoretical relations are verified by the experimentaf data for various polymer melts. These relations are found to be in good agreement with the experimental results展开更多
An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super NLS-MKdV hierarchy. Under the obtained symmetry constraint, the n-th flow of th...An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super NLS-MKdV hierarchy. Under the obtained symmetry constraint, the n-th flow of the super NLS-MKdV hierarchy is decomposed into two super finite-dimensional integrable Hamiltonian systems, defined over the super-symmetry manifold R4N|2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.展开更多
By redefining the multiplier associated with inequality constraint as a positive definite function of the originally-defined multiplier, say, u2_i, i=1, 2, ..., m, nonnegative constraints imposed on inequality constra...By redefining the multiplier associated with inequality constraint as a positive definite function of the originally-defined multiplier, say, u2_i, i=1, 2, ..., m, nonnegative constraints imposed on inequality constraints in Karush-Kuhn-Tucker necessary conditions are removed. For constructing the Lagrange neural network and Lagrange multiplier method, it is no longer necessary to convert inequality constraints into equality constraints by slack variables in order to reuse those results dedicated to equality constraints, and they can be similarly proved with minor modification. Utilizing this technique, a new type of Lagrange neural network and a new type of Lagrange multiplier method are devised, which both handle inequality constraints directly. Also, their stability and convergence are analyzed rigorously.展开更多
In this paper,we present an optimal neuro-control scheme for continuous-time(CT)nonlinear systems with asymmetric input constraints.Initially,we introduce a discounted cost function for the CT nonlinear systems in ord...In this paper,we present an optimal neuro-control scheme for continuous-time(CT)nonlinear systems with asymmetric input constraints.Initially,we introduce a discounted cost function for the CT nonlinear systems in order to handle the asymmetric input constraints.Then,we develop a Hamilton-Jacobi-Bellman equation(HJBE),which arises in the discounted cost optimal control problem.To obtain the optimal neurocontroller,we utilize a critic neural network(CNN)to solve the HJBE under the framework of reinforcement learning.The CNN's weight vector is tuned via the gradient descent approach.Based on the Lyapunov method,we prove that uniform ultimate boundedness of the CNN's weight vector and the closed-loop system is guaranteed.Finally,we verify the effectiveness of the present optimal neuro-control strategy through performing simulations of two examples.展开更多
An algorithm for solving nonlinear least squares problems with general linear inequality constraints is described.At each step,the problem is reduced to an unconstrained linear least squares problem in a subs pace def...An algorithm for solving nonlinear least squares problems with general linear inequality constraints is described.At each step,the problem is reduced to an unconstrained linear least squares problem in a subs pace defined by the active constraints,which is solved using the quasi-Newton method.The major update formula is similar to the one given by Dennis,Gay and Welsch (1981).In this paper,we state the detailed implement of the algorithm,such as the choice of active set,the solution of subproblem and the avoidance of zigzagging.We also prove the globally convergent property of the algorithm.展开更多
This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transf...This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.展开更多
文摘Bifurcation of periodic solutions widely existed in nonlinear dynamical systems is a kind oftonstrained one in intrinsic quality because its amplitude is always non-negative Classification of the bifurcations with the type of constraint was discussed. All its six types of transition sets are derived, in which three types are newly found and a method is proposed for analyzing the constrained bifurcation.
基金supported jointly by the National Natural Science Foundation of China(61703033,61790573)Beijing Natural Science Foundation(4192046)+1 种基金Fundamental Research Funds for Central Universities(2018JBZ002)State Key Laboratory of Rail Traffic Control and Safety(RCS2018ZT013),Beijing Jiaotong University
文摘This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of guaranteeing,under some proper non-restrictive initial conditions,the protection constraints control raised by the distance-to-go(moving authority)curve and automatic train protection in practice.A new hyperbolic tangent function-based model is presented to mimic the whole operation process of high-speed trains.The proposed feedback control methods are easily implementable and computationally inexpensive because the presence of only two feedback gains guarantee satisfactory tracking performance and closed-loop stability,no adaptations of unknown parameters,function approximation of unknown nonlinearities,and attenuation of external disturbances in the proposed control strategies.Finally,rigorous proofs and comparative simulation results are given to demonstrate the effectiveness of the proposed approaches.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11572025,11202013 and 51420105008
文摘To shed light on the subgrid-seale (SGS) modeling methodology of nonlinear systems such as the Navier-Stokes turbulence, we define the concepts of assumption and restriction in the modeling procedure, which are shown by generalized derivation of three general mathematical constraints for different combinations of restrictions. These constraints are verified numerically in a one-dimensional nonlinear advection equation. This study is expected to inspire future research on the SGS modeling methodology of nonlinear systems.
文摘An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model structure for a single polymer chain with n tail segments and N reversible entanglement sites on the test polymer chain is developed. Based on the above model structure and the mechanism of molecular flow by the dynamical reorganization of entanglement sites, the probability distribution function of the end-to-end vectr for a single polymer chain at entangled state and the viscoelastic free energy of deformation for polymer melts are calculated by using the method of the stochastically statistical mechanics. The four types of stress-strain relation and the memory function are derived from this thery. The above theoretical relations are verified by the experimentaf data for various polymer melts. These relations are found to be in good agreement with the experimental results
文摘An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super NLS-MKdV hierarchy. Under the obtained symmetry constraint, the n-th flow of the super NLS-MKdV hierarchy is decomposed into two super finite-dimensional integrable Hamiltonian systems, defined over the super-symmetry manifold R4N|2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.
文摘By redefining the multiplier associated with inequality constraint as a positive definite function of the originally-defined multiplier, say, u2_i, i=1, 2, ..., m, nonnegative constraints imposed on inequality constraints in Karush-Kuhn-Tucker necessary conditions are removed. For constructing the Lagrange neural network and Lagrange multiplier method, it is no longer necessary to convert inequality constraints into equality constraints by slack variables in order to reuse those results dedicated to equality constraints, and they can be similarly proved with minor modification. Utilizing this technique, a new type of Lagrange neural network and a new type of Lagrange multiplier method are devised, which both handle inequality constraints directly. Also, their stability and convergence are analyzed rigorously.
基金supported by the National Natural Science Foundation of China(61973228,61973330)
文摘In this paper,we present an optimal neuro-control scheme for continuous-time(CT)nonlinear systems with asymmetric input constraints.Initially,we introduce a discounted cost function for the CT nonlinear systems in order to handle the asymmetric input constraints.Then,we develop a Hamilton-Jacobi-Bellman equation(HJBE),which arises in the discounted cost optimal control problem.To obtain the optimal neurocontroller,we utilize a critic neural network(CNN)to solve the HJBE under the framework of reinforcement learning.The CNN's weight vector is tuned via the gradient descent approach.Based on the Lyapunov method,we prove that uniform ultimate boundedness of the CNN's weight vector and the closed-loop system is guaranteed.Finally,we verify the effectiveness of the present optimal neuro-control strategy through performing simulations of two examples.
基金Supported by The Natural Science Fundations of China and Jiangsu
文摘An algorithm for solving nonlinear least squares problems with general linear inequality constraints is described.At each step,the problem is reduced to an unconstrained linear least squares problem in a subs pace defined by the active constraints,which is solved using the quasi-Newton method.The major update formula is similar to the one given by Dennis,Gay and Welsch (1981).In this paper,we state the detailed implement of the algorithm,such as the choice of active set,the solution of subproblem and the avoidance of zigzagging.We also prove the globally convergent property of the algorithm.
基金supported by National Natural Science Foundation of China (No. 60574014, No. 60425310)Doctor Subject Foundation of China (No. 200805330004)+2 种基金Program for New Century Excellent Talents in University (No. NCET-06-0679)Natural Science Foundation of Hunan Province of China (No. 08JJ1010)Science Foundation of Education Department of Hunan Province (No. 08C106)
文摘This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.