The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz ...The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.展开更多
The aim of our work is to formulate and demonstrate the results of the normality, the Lipschitz continuity, of a nonlinear feedback system described by the monotone maximal operators and hemicontinuous, defined on rea...The aim of our work is to formulate and demonstrate the results of the normality, the Lipschitz continuity, of a nonlinear feedback system described by the monotone maximal operators and hemicontinuous, defined on real reflexive Banach spaces, as well as the approximation in a neighborhood of zero, of solutions of a feedback system [A,B] assumed to be non-linear, by solutions of another linear, This approximation allows us to obtain appropriate estimates of the solutions. These estimates have a significant effect on the study of the robust stability and sensitivity of such a system see <a href="#ref1">[1]</a> <a href="#ref2">[2]</a> <a href="#ref3">[3]</a>. We then consider a linear FS <img src="Edit_4629d4d0-bbb2-478d-adde-391efde3d1e0.bmp" alt="" />, and prove that, if <img src="Edit_435aae08-e821-4b4d-99d2-e2a2b47609c1.bmp" alt="" />;<img src="Edit_4fa030bc-1f97-4726-8257-ca8d00657aac.bmp" alt="" /> , with <img src="Edit_63ab4faa-ba40-45fe-8b8a-7a6caef91794.bmp" alt="" />the respective solutions of FS’s [A,B] and <img src="Edit_e78e2e6d-8934-4011-93eb-8b7eb52fa856.bmp" alt="" /> corresponding to the given (u,v) in <img src="Edit_0e18433c-8c7a-454f-8eec-6eb9fb69469a.bmp" alt="" /> . There exists,<img src="Edit_3dcd8afc-8cea-4c06-a920-e4148a5f793e.bmp" alt="" />, positive real constants such that, <img src="Edit_edb88446-3e39-4fe0-865a-114de701e78e.bmp" alt="" />. These results are the subject of theorems 3.1, <span style="font-size:10.0pt;font-family:;" "="">... </span>, 3.3. The proofs of these theorems are based on our lemmas 3.2, <span style="font-size:10.0pt;font-family:;" "="">... </span>, 3.5, devoted according to the hypotheses on A and B, to the existence of the inverse of the operator <em>I+BA</em> and <img src="Edit_2db1326b-cb5b-44cf-8d1f-df22bd6da45f.bmp" alt="" />. The results obtained and demonstrated along this document, present an extension in general Banach space of those in <a href="#ref4">[4]</a> on a Hilbert space <em>H</em> and those in <a href="#ref5">[5]</a> on a extended Hilbert space <img src="Edit_b70ce337-1812-4d4b-ae7d-a24da7e5b3cf.bmp" alt="" />.展开更多
In this paper,the leader–follower consensus of feedforward nonlinear multi-agent systems is achieved by designing the distributed output feedback controllers with a time-varying gain.The agents dynamics are assumed t...In this paper,the leader–follower consensus of feedforward nonlinear multi-agent systems is achieved by designing the distributed output feedback controllers with a time-varying gain.The agents dynamics are assumed to be in upper triangular structure and satisfy Lipschitz conditions with an unknown constant multiplied by a time-varying function.A time-varying gain,which increases monotonously and tends to infinity,is proposed to construct a compensator for each follower agent.Based on a directed communication topology,the distributed output feedback controller with a time-varying gain is designed for each follower agent by only using the output information of the follower and its neighbors.It is proved by the Lyapunov theorem that the leader–follower consensus of the multi-agent system is achieved by the proposed consensus protocol.The effectiveness of the proposed time-varying gain method is demonstrated by a circuit system.展开更多
This paper investigates the H∞ trajectory tracking control for a class of nonlinear systems with time- varying delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) techniq...This paper investigates the H∞ trajectory tracking control for a class of nonlinear systems with time- varying delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. A unified model consisting of a linear delayed dynamic system and a bounded static nonlinear operator is introduced, which covers most of the nonlinear systems with bounded nonlinear terms, such as the one-link robotic manipulator, chaotic systems, complex networks, the continuous stirred tank reactor (CSTR), and the standard genetic regulatory network (SCRN). First, the definition of the tracking control is given. Second, the H∞ performance analysis of the closed-loop system including this unified model, reference model, and state feedback controller is presented. Then criteria on the tracking controller design are derived in terms of LMIs such that the output of the closed-loop system tracks the given reference signal in the H∞ sense. The reference model adopted here is modified to be more flexible. A scaling factor is introduced to deal with the disturbance such that the control precision is improved. Finally, a CSTR system is provided to demonstrate the effectiveness of the established control laws.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No. 61174001)
文摘The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.
文摘The aim of our work is to formulate and demonstrate the results of the normality, the Lipschitz continuity, of a nonlinear feedback system described by the monotone maximal operators and hemicontinuous, defined on real reflexive Banach spaces, as well as the approximation in a neighborhood of zero, of solutions of a feedback system [A,B] assumed to be non-linear, by solutions of another linear, This approximation allows us to obtain appropriate estimates of the solutions. These estimates have a significant effect on the study of the robust stability and sensitivity of such a system see <a href="#ref1">[1]</a> <a href="#ref2">[2]</a> <a href="#ref3">[3]</a>. We then consider a linear FS <img src="Edit_4629d4d0-bbb2-478d-adde-391efde3d1e0.bmp" alt="" />, and prove that, if <img src="Edit_435aae08-e821-4b4d-99d2-e2a2b47609c1.bmp" alt="" />;<img src="Edit_4fa030bc-1f97-4726-8257-ca8d00657aac.bmp" alt="" /> , with <img src="Edit_63ab4faa-ba40-45fe-8b8a-7a6caef91794.bmp" alt="" />the respective solutions of FS’s [A,B] and <img src="Edit_e78e2e6d-8934-4011-93eb-8b7eb52fa856.bmp" alt="" /> corresponding to the given (u,v) in <img src="Edit_0e18433c-8c7a-454f-8eec-6eb9fb69469a.bmp" alt="" /> . There exists,<img src="Edit_3dcd8afc-8cea-4c06-a920-e4148a5f793e.bmp" alt="" />, positive real constants such that, <img src="Edit_edb88446-3e39-4fe0-865a-114de701e78e.bmp" alt="" />. These results are the subject of theorems 3.1, <span style="font-size:10.0pt;font-family:;" "="">... </span>, 3.3. The proofs of these theorems are based on our lemmas 3.2, <span style="font-size:10.0pt;font-family:;" "="">... </span>, 3.5, devoted according to the hypotheses on A and B, to the existence of the inverse of the operator <em>I+BA</em> and <img src="Edit_2db1326b-cb5b-44cf-8d1f-df22bd6da45f.bmp" alt="" />. The results obtained and demonstrated along this document, present an extension in general Banach space of those in <a href="#ref4">[4]</a> on a Hilbert space <em>H</em> and those in <a href="#ref5">[5]</a> on a extended Hilbert space <img src="Edit_b70ce337-1812-4d4b-ae7d-a24da7e5b3cf.bmp" alt="" />.
基金the National Natural Science Foundation of China(Nos.61973189,62073190)the Research Fund for the Taishan Scholar Project of Shandong Province of China(No.ts20190905)the Natural Science Foundation of Shandong Province of China(No.ZR2020ZD25).
文摘In this paper,the leader–follower consensus of feedforward nonlinear multi-agent systems is achieved by designing the distributed output feedback controllers with a time-varying gain.The agents dynamics are assumed to be in upper triangular structure and satisfy Lipschitz conditions with an unknown constant multiplied by a time-varying function.A time-varying gain,which increases monotonously and tends to infinity,is proposed to construct a compensator for each follower agent.Based on a directed communication topology,the distributed output feedback controller with a time-varying gain is designed for each follower agent by only using the output information of the follower and its neighbors.It is proved by the Lyapunov theorem that the leader–follower consensus of the multi-agent system is achieved by the proposed consensus protocol.The effectiveness of the proposed time-varying gain method is demonstrated by a circuit system.
基金supported by the National Natural Science Foundation of China(Nos.61222310,61174142,and 61374021)the Zhejiang Provincial Natural Science Foundation of China(No.LZ14F030002)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Nos.20120101110115 and 20130101110109)the Fundamental Research Funds for the Central Universities,China(No.2014XZZX003-12)
文摘This paper investigates the H∞ trajectory tracking control for a class of nonlinear systems with time- varying delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. A unified model consisting of a linear delayed dynamic system and a bounded static nonlinear operator is introduced, which covers most of the nonlinear systems with bounded nonlinear terms, such as the one-link robotic manipulator, chaotic systems, complex networks, the continuous stirred tank reactor (CSTR), and the standard genetic regulatory network (SCRN). First, the definition of the tracking control is given. Second, the H∞ performance analysis of the closed-loop system including this unified model, reference model, and state feedback controller is presented. Then criteria on the tracking controller design are derived in terms of LMIs such that the output of the closed-loop system tracks the given reference signal in the H∞ sense. The reference model adopted here is modified to be more flexible. A scaling factor is introduced to deal with the disturbance such that the control precision is improved. Finally, a CSTR system is provided to demonstrate the effectiveness of the established control laws.