期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Hlder Continuity of the Gradient of Solutions of Nonlinear Degenerate Parabolic Systems 被引量:3
1
作者 陈亚渐 《Acta Mathematica Sinica,English Series》 SCIE 1986年第4期309-331,共23页
§1. Introduction In this paper we consider the parabolic system (?)t/(?)ui-div(|▽u|p-2▽ui)=0(1≤i≤m), with p>1, where ui=ui(x, t), ▽=gradxand x varies in an open domain Ω(?)RN. The system is degenerate if... §1. Introduction In this paper we consider the parabolic system (?)t/(?)ui-div(|▽u|p-2▽ui)=0(1≤i≤m), with p>1, where ui=ui(x, t), ▽=gradxand x varies in an open domain Ω(?)RN. The system is degenerate if p>2 or singular if 1<p<2. A vector function u=(u1, u2, …, um) defined in ΩT=Ω×[0, T] is called a solution of the system (1.1) if 展开更多
关键词 Hlder Continuity of the Gradient of Solutions of nonlinear degenerate parabolic systems
原文传递
ON THE CAUCHY PROBLEM OF NONLINEAR DEGENERATE PARABOLIC EQUATION
2
作者 YANG JINSHUN 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1995年第2期155-166,共12页
In this paper, we prove the existence of solution of the Cauchy problem of a nonlinear degenerate parabolic equation. Moreover some regularizing effects are exhibited.
关键词 nonlinear degenerate parabolic equation Cauchy problem regularity.
下载PDF
Blow Up for Solutions of Nonlinear Doubly Degenerate Parabolic Equation
3
作者 Liang Xuexin (Dept. of Math., Huaqiao University Quanzhou 362011,China) 《Chinese Quarterly Journal of Mathematics》 CSCD 1996年第1期6-17,共12页
This paper studies the conditions of blow up in finite time of solutions of initial boundary value problem for a class nonlinear doubly degenerate parabolic equation.
关键词 nonlinear doubly degenerate parabolic equation generalized solution initial boundary value problem blow up
下载PDF
Homogenization of a Nonlinear Degenerate Parabolic Differential Equation 被引量:1
4
作者 Hai Tao CAO Xing Ye YUE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第7期1429-1436,共8页
This paper is devoted to the homogenization of a nonlinear degenerate parabolic problemwith Dirichlet boundary condition. Here the operator D(y, s, △s) is periodic in y and degenerated in △s. In the paper, under t... This paper is devoted to the homogenization of a nonlinear degenerate parabolic problemwith Dirichlet boundary condition. Here the operator D(y, s, △s) is periodic in y and degenerated in △s. In the paper, under the two-scale convergence theory, we obtain the limit equation as ∈ → 0 and also prove the corrector results of △u^∈ to strong convergence. 展开更多
关键词 nonlinear degenerate parabolic equation HOMOGENIZATION two-scale convergence
原文传递
Nonexistence and Longtime Behaviors of Solutions to a Class of Nonlinear Degenerate Parabolic Equations Not in Divergence Form
5
作者 Yu-dong SUN Yi-min SHI MIN WU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2016年第2期327-332,共6页
In this paper, we study the nonexistence and longtime behavior of weak solution for the degenerate parabolic equation σtun=umdiv(|▽um|p-2▽um)+γ|▽um|p+βun with zero boundary condition. Blow-up time is der... In this paper, we study the nonexistence and longtime behavior of weak solution for the degenerate parabolic equation σtun=umdiv(|▽um|p-2▽um)+γ|▽um|p+βun with zero boundary condition. Blow-up time is derived when the blow-up does occur. 展开更多
关键词 NONEXISTENCE nonlinear degenerate parabolic equations weak solution BLOW-UP
原文传递
Nonlinear Degenerate Parabolic Equations with Time-dependent Singular Potentials for Baouendi–Grushin Vector Fields
6
作者 Jun Qiang HAN Qian Qiao GUO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第1期123-139,共17页
In this paper, we are concerned with the following three types of nonlinear degenerate parabolic equations with time-dependent singular potentials: uq/ t=▽α·(‖z‖^-pγ|▽αu|^p-2▽αu)+V(z, t)u^p-1, uq... In this paper, we are concerned with the following three types of nonlinear degenerate parabolic equations with time-dependent singular potentials: uq/ t=▽α·(‖z‖^-pγ|▽αu|^p-2▽αu)+V(z, t)u^p-1, uq/ t=▽α·(‖z‖^-2γ▽αu^m)+V(z, t)u^m, uq/ t=u^μ▽α·(u^τ|▽αu|^p-2▽αu)+V(z, t)u^p-1+μ+τin a cylinder Ω×(0, T) with initial condition u(z, 0)=u0(z) ≥ 0 and vanishing on the boundary Ω×(0, T), where Ω is a Carnot-Carathéodory metric ball in Rd+k and the time-dependent singular potential function is V(z, t) ∈ L^1loc (Ω×(0, T)). We investigate the nonexistence of positive solutions of these three problems and present our results on nonexistence. 展开更多
关键词 nonlinear degenerate parabolic equations Baouendi-Grushin vector fields positive solu-tions~ nonexistence Hardy inequality
原文传递
Doubly Nonlinear Degenerate Parabolic Equations with a Singular Potential for Greiner Vector Fields
7
作者 HAN Junqiang 《Journal of Partial Differential Equations》 CSCD 2022年第4期307-319,共13页
The purpose of this paper is to investigate the nonexistence of positive so lutions of the following doubly nonlinear degenerate parabolic equations:{∂u=▽k·(u^(m-1)|▽ku|^(p-2)▽ku)+(w)u^(m+p-2),u(w,0)=u0(w)≥0,... The purpose of this paper is to investigate the nonexistence of positive so lutions of the following doubly nonlinear degenerate parabolic equations:{∂u=▽k·(u^(m-1)|▽ku|^(p-2)▽ku)+(w)u^(m+p-2),u(w,0)=u0(w)≥0,u(w,t)=0,inΩ×(0,T),inΩ,on∂Ω×(0,T),where Q is a Carnot-Carathéodory metric bal in IR^(2n+1)generated by Greiner vector fields,V∈L_(loc)(Ω),k∈N,m∈R,1<p<2n+2k and m+p-2>0.The better lower bound p*for m+p is found and the nonexistence results are proved for p*≤m+p<3. 展开更多
关键词 Doubly nonlinear degenerate parabolic equations Greiner vector fields positive solutions NONEXISTENCE Hardy inequality
原文传递
Nonlinear Degenerate Parabolic Equation with Nonlinear Boundary Condition
8
作者 Wen Jun SUN Shu WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第4期847-854,共8页
In this paper, we obtain the necessary and sufficient conditions on the global existence of all positive (weak) solutions to a nonlinear degenerate parabolic equation with nonlinear boundary condition.
关键词 nonlinear degenerate parabolic equation Global existence BLOW-UP
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部