期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
2D noncarbon materials-based nonlinear optical devices for ultrafast photonics [Invited] 被引量:17
1
作者 Bo Guo 《Chinese Optics Letters》 SCIE EI CAS CSCD 2018年第2期12-46,共35页
Ultrafast lasers play an important role in a variety of applications ranging from optical communications to medical diagnostics and industrial materials processing. Graphene and other two-dimensional(2D) noncarbon m... Ultrafast lasers play an important role in a variety of applications ranging from optical communications to medical diagnostics and industrial materials processing. Graphene and other two-dimensional(2D) noncarbon materials, including topological insulators(TIs), transition metal dichalcogenides(TMDCs), phosphorene, bismuthene, and antimonene, have witnessed a very fast development of both fundamental and practical aspects in ultrafast photonics since 2009. Their unique nonlinear optical properties enable them to be used as excellent saturable absorbers(SAs) that have fast responses and broadband operation, and can be easily integrated into lasers. Here, we catalog and review recent progress in the exploitation of these 2D noncarbon materials in this emerging field. The fabrication techniques, nonlinear optical properties, and device integration strategies of 2D noncarbon materials are first introduced with a comprehensive view. Then, various mode-locked/Q-switched lasers(e.g., fiber, solid-state, disk, and waveguide lasers) based on 2D noncarbon materials are reviewed. In addition, versatile soliton pulses generated from the mode-locked fiber lasers based on 2D noncarbon materials are also summarized. Finally, future challenges and perspectives of 2D materials-based lasers are addressed. 展开更多
关键词 Invited noncarbon materials-based nonlinear optical devices for ultrafast photonics
原文传递
Neuro-Space Mapping for Modeling Heterojunction Bipolar Transistor 被引量:1
2
作者 闫淑霞 成千福 +1 位作者 邬海峰 张齐军 《Transactions of Tianjin University》 EI CAS 2015年第1期90-94,共5页
A neuro-space mapping(Neuro-SM) for modeling heterojunction bipolar transistor(HBT) is presented, which can automatically modify the input signals of the given model by neural network. The novel Neuro-SM formulations ... A neuro-space mapping(Neuro-SM) for modeling heterojunction bipolar transistor(HBT) is presented, which can automatically modify the input signals of the given model by neural network. The novel Neuro-SM formulations for DC and small-signal simulation are proposed to obtain the mapping network. Simulation results show that the errors between Neuro-SM models and the accurate data are less than 1%, demonstrating that the accurcy of the proposed method is higher than those of the existing models. 展开更多
关键词 heterojunction bipolar transistor (HBT) nonlinear device modeling neural network neuro-space mapping OPTIMIZATION
下载PDF
Nonlinear optics of two-dimensional transition metal dichalcogenides 被引量:16
3
作者 Xinglin Wen Zibo Gong Dehui Li 《InfoMat》 SCIE CAS 2019年第3期317-337,共21页
Nonlinear optics(NLO)of transition metal dichalcogenides(TMDs)is promising for the on-chip photonic and optoelectronic applications.In this review,we will survey the current progress of NLO in TMDs.First,we will brief... Nonlinear optics(NLO)of transition metal dichalcogenides(TMDs)is promising for the on-chip photonic and optoelectronic applications.In this review,we will survey the current progress of NLO in TMDs.First,we will brief the basic theory of the NLO in TMDs.Second,several important nonlinear processes in TMDs such as harmonic generation,four-wave mixing,saturable absorption,and two-photon absorption will be presented and their potential applications are also discussed.Third,the main strategies to tune,modulate,and enhance the NLO in TMDs are reviewed,including the excitonic effect,symmetry modulation,optical cavity enhancement,valley selection,edge state,and material phase.Finally,we give an outlook regarding some important issues and directions of NLO in TMDs. 展开更多
关键词 NLO modulation and enhancement nonlinear devices nonlinear optics transition metal dichalcogenides
原文传递
Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser [Invited] 被引量:2
4
作者 Ai-Ping Luo Meng Liu +3 位作者 Xu-De Wang Qiu-Yi Ning Wen-Cheng Xu Zhi-Chao Luo 《Photonics Research》 SCIE EI 2015年第2期69-78,共10页
Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to p... Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to possess both the saturable absorption effect and large nonlinear refractive index. Herein, taking advantage of the unique nonlinear optical properties of MoS2, we fabricated a highly nonlinear saturable absorption photonic device by depositing the few-layer MoS2 onto the microfiber. With the proposed MoS2 photonic device, apart from the conventional soliton patterns, the mode-locked pulses could be shaped into some new soliton patterns, namely,multiple soliton molecules, localized chaotic multipulses, and double-scale soliton clusters. Our findings indicate that the few-layer MoS2-deposited microfiber could operate as a promising highlynonlinear photonic device for the related nonlinear optics applications. 展开更多
关键词 high Mo mode Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser
原文传递
Classical and quantum photonic sources based upon a nonlinear GaP/Si-superlattice micro-ring resonator
5
作者 Richard Soref Francesco De Leonardis 《Chip》 2022年第2期8-15,共8页
We present a theoretical investigation,based on the tight-binding Hamiltonian,of efficient second-and third-order nonlinear optical processes in the lattice-matched undoped(GaP)N/(Si 2)M short-period superlattice that... We present a theoretical investigation,based on the tight-binding Hamiltonian,of efficient second-and third-order nonlinear optical processes in the lattice-matched undoped(GaP)N/(Si 2)M short-period superlattice that is waveguide-integrated in a microring resonator on an opto-electronic chip.The nonlinear superlattice structures are sit-uated on the optically pumped input area of a heterogeneous“XOI”chip based on silicon.The spectra ofχ(2)zzz(2ω,ω,ω),χ(2)xzx(2ω,ω,ω),χ(3)xxxx(3ω,ω,ω,ω)and the Kerr refractive index(n 2),have been simu-lated as a function of the number of the atomic monolayers for“non-relaxed”heterointerfaces;These nonlinearities are induced by transi-tions between valence and conduction bands.The large obtained val-ues make the(GaP)N/(Si 2)M short-period superlattice a good can-didate for future high-performance XOI photonic integrated chips that may include Si 3 N 4 or SiC or AlGaAs or Si.Near or at the 810-nm and 1550-nm wavelengths,we have made detailed calculations of the efficiency of second-and third-harmonic generation as well as the performances of entangled photon-pair quantum sources that are based upon spontaneous parametric down conversion and sponta-neous four-wave mixing.The results indicate that the(GaP)N/(Si 2)M short-period superlattice is competitive with present technologies and is practical for classical and quantum applications. 展开更多
关键词 Optical waveguides Microring resonator nonlinear optical devices Harmonic Generation Spontaneous parametric down conversion Spontaneous four wave mixing SUPERLATTICE SOI Technology
原文传递
The Fabrication and SHG Test of QPM Periodically Poled KTiOPO_4 被引量:1
6
作者 Mei Sang Jian Yu Wenjun Ni Ting Xue Shichen LiCollege of science, College of precision instrument and Optoelectronics Engineering, TianjinUniversity, Key Laboratory of Opto-electronics Information and Technical Science, Ministry ofEducation, Tianjin, P.R.China, Tel: 86-22-27404468, Fax: 86-22-27406726, E-mail: m_sang@eyou.com 《光学学报》 EI CAS CSCD 北大核心 2003年第S1期511-512,共2页
The Quasi-phase-matching periodically poled flux-grown KTP by high electrical field method is researched. A 8×5×1mm3,∧=9.0μm PPKTP wafer is successfully fabricated for the first order QPM SHG. The interact... The Quasi-phase-matching periodically poled flux-grown KTP by high electrical field method is researched. A 8×5×1mm3,∧=9.0μm PPKTP wafer is successfully fabricated for the first order QPM SHG. The interactive length of the sample is about 3mm. The SHG scheme of Nd: YAG at 1064nm tested that the output power of cw 532nm green light is 0.2mw at room temperature with fundamental power of 1.2w. The normalized conversion efficiency is about 0.09% (W·cm)-1. 展开更多
关键词 Quasi phase-matching (QPM) periodically poled KTiOPO4(PPKTP) wavelength conversion nonlinear device Second harmonic generation (SHG)
原文传递
Transverse mode interaction-induced Raman laser switching dynamics in a silica rod microresonator
7
作者 金雪莹 方青林 +3 位作者 徐昕 杨煜 高浩然 夏豪杰 《Chinese Optics Letters》 SCIE EI CAS CSCD 2023年第3期101-107,共7页
We investigate the mechanisms to realize the Raman laser switching in a silica rod microresonator with mode-interactionassisted excitation.The laser switching can be triggered between two whispering gallery modes[WGMs... We investigate the mechanisms to realize the Raman laser switching in a silica rod microresonator with mode-interactionassisted excitation.The laser switching can be triggered between two whispering gallery modes[WGMs]with either the same or distinct mode families,depending on the pumping conditions.The experimental observations are in excellent agreement with a theoretical analysis based on coupled-mode equations with intermodal interaction terms involved.Additionally,we also demonstrate switching of a single-mode Raman laser and a wideband spectral tuning range up to~32.67 nm by selective excitation of distinct mode sequences.The results contribute to the understanding of Raman lasing formation dynamics via interaction with transverse mode sequences and may extend the microcavity-based Raman microlasers to potential areas in switchable light sources,optical memories,and high sensitivity sensors. 展开更多
关键词 nonlinear optics devices Raman laser MICRORESONATORS
原文传递
Electric-field-induced quasi-phase-matched three-wave mixing in silicon-based superlattice-on-insulator integrated circuits
8
作者 Richard Soref Francesco De Leonardis 《Chip》 2023年第2期16-25,共10页
We present a theoretical investigation,based on the tight-binding Hamiltonian,of efficient electric-field-induced three-waves mixing(EFIM)in an undoped lattice-matched short-period superlattice(SL)that integrates quas... We present a theoretical investigation,based on the tight-binding Hamiltonian,of efficient electric-field-induced three-waves mixing(EFIM)in an undoped lattice-matched short-period superlattice(SL)that integrates quasi-phase-matched(QPM)SL straight waveguides and SL racetrack resonators on an opto-electronic chip.Periodically reversed DC voltage is applied to electrode segments on each side of the strip waveguide.The spectra ofχ_(xxxx)^((3))and of the linear suscepti-bility have been simulated as a function of the number of the atomic monolayers for“non-relaxed”heterointerfaces,and by considering all the transitions between valence and conduction bands.The large ob-tained values ofχ_(xxxx)^((3))make the(ZnS)3/(Si2)3 short-period SL a good candidate for realizing large effective second-order nonlinearity,en-abling future high-performance of the SLOI PICs and OEICs in the 1000-nm and 2000-nm wavelengths ranges.We have made detailed calculations of the efficiency of second-harmonic generation and of the performances of the optical parametric oscillator(OPO).The re-sults indicate that the(ZnS)N/(Si2)M QPM is competitive with present PPLN technologies and is practical for classical and quantum appli-cations. 展开更多
关键词 Optical waveguides Semiconductor superlattices Racetrack resonator nonlinear optical devices Harmonic generation optical para-metric oscillator Three wave mixing SOI technology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部