By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help o...By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.展开更多
A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordin...A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordinary equation. A difference scheme is derived by the method of reduction of order. First, a new variable is introduced and the original problem is rewritten into a system of the first-order differential equations. Secondly, a difference scheme is constructed for the later problem. The solvability, stability and convergence of the difference scheme are proved by the energy method. The convergence order of the difference scheme is secondorder both in time and in space. A prior error estimate is put forward. The new variable is put aside to reduce the computational cost. A numerical example testifies the theoretical result.展开更多
This paper presents a new and efficient approach for constructing exact solutions to nonlinear differential-difference equations (NLDDEs) and lattice equation. By using this method via symbolic computation system MA...This paper presents a new and efficient approach for constructing exact solutions to nonlinear differential-difference equations (NLDDEs) and lattice equation. By using this method via symbolic computation system MAPLE, we obtained abundant soliton-like and/or period-form solutions to the (2+1)-dimensional Toda equation. It seems that solitary wave solutions are merely special cases in one family. Furthermore, the method can also be applied to other nonlinear differential-difference equations.展开更多
The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference ...The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference scheme is constructed. The stability and convergence of that scheme are studied. Numerical experiments are carried out. The appropriate graphical illustrations and tables are given.展开更多
The model of nuclear reactor dynamics is an initial-boundary value problems of a cou- pled nonlinear integrodifferential equation system of one ordinary differential equation and one par-- tial differential equation. ...The model of nuclear reactor dynamics is an initial-boundary value problems of a cou- pled nonlinear integrodifferential equation system of one ordinary differential equation and one par-- tial differential equation. In this this,paper,a linearized difference scheme is derived by the method of reduction of order.It is proved that the scheme is uniquely solvable and unconditionally convergent with the convergence rate of order two both in discrete H1norm and in discrete maxinum narm,and one needs only to solve a tridiagonal system of linear algebraic equations at each time lev- el.The method of reduction of order is an indirect constructing-difference-scheme method,which aim is for the analysis of solvablity and convergence of the constructed difference scheme.展开更多
The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is construc...The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is constructed and investigated. Absolute stability regarding space and time steps of scheme is shown. The convergence statement for the constructed scheme is proved. Rate of convergence is given. Various numerical experiments are carried out and results of some of them are considered in this paper. Comparison of numerical experiments with the results of the theoretical investigation is given too.展开更多
文摘By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.
基金The National Natural Science Foundation of China (No10471023)
文摘A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordinary equation. A difference scheme is derived by the method of reduction of order. First, a new variable is introduced and the original problem is rewritten into a system of the first-order differential equations. Secondly, a difference scheme is constructed for the later problem. The solvability, stability and convergence of the difference scheme are proved by the energy method. The convergence order of the difference scheme is secondorder both in time and in space. A prior error estimate is put forward. The new variable is put aside to reduce the computational cost. A numerical example testifies the theoretical result.
基金supported by the National Natural Science Foundation of Chinathe Natural Science Foundation of Shandong Province in China (Grant No Y2007G64)
文摘This paper presents a new and efficient approach for constructing exact solutions to nonlinear differential-difference equations (NLDDEs) and lattice equation. By using this method via symbolic computation system MAPLE, we obtained abundant soliton-like and/or period-form solutions to the (2+1)-dimensional Toda equation. It seems that solitary wave solutions are merely special cases in one family. Furthermore, the method can also be applied to other nonlinear differential-difference equations.
文摘The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference scheme is constructed. The stability and convergence of that scheme are studied. Numerical experiments are carried out. The appropriate graphical illustrations and tables are given.
基金NSF of Jiangsu Province (BK97004) and NSF of China (19801007)
文摘The model of nuclear reactor dynamics is an initial-boundary value problems of a cou- pled nonlinear integrodifferential equation system of one ordinary differential equation and one par-- tial differential equation. In this this,paper,a linearized difference scheme is derived by the method of reduction of order.It is proved that the scheme is uniquely solvable and unconditionally convergent with the convergence rate of order two both in discrete H1norm and in discrete maxinum narm,and one needs only to solve a tridiagonal system of linear algebraic equations at each time lev- el.The method of reduction of order is an indirect constructing-difference-scheme method,which aim is for the analysis of solvablity and convergence of the constructed difference scheme.
基金Project Supported by National Nature Science Foundation of China(10461006)the High Education Science ResearchProgramof Inner Mongolia(NJ02035)the Natural Science Foundation of Inner Mongolia(2004080201103)
文摘The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is constructed and investigated. Absolute stability regarding space and time steps of scheme is shown. The convergence statement for the constructed scheme is proved. Rate of convergence is given. Various numerical experiments are carried out and results of some of them are considered in this paper. Comparison of numerical experiments with the results of the theoretical investigation is given too.