Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1...Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.展开更多
In this paper, we introduce new concepts of a-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in [21, 22] and different from a-GF-contractions given in [8]. Then...In this paper, we introduce new concepts of a-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in [21, 22] and different from a-GF-contractions given in [8]. Then, sufficient conditions for the existence and uniqueness of fixed point are established for these new types of contractive mappings, in the setting of complete metric space. Consequently, the obtained results encompass various generalizations of the Banach contraction principle. Moreover, some examples and an application to nonlinear fractional differential equation are given to illustrate the usability of the new theory.展开更多
In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-...In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.展开更多
By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help o...By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.展开更多
In this paper, the two and three-point boundary Problems (with nonlinearboundary conditions) for the general nonlinear differential equations of fourth orderare discussed. We have set some groups of the assumption con...In this paper, the two and three-point boundary Problems (with nonlinearboundary conditions) for the general nonlinear differential equations of fourth orderare discussed. We have set some groups of the assumption conditions and Proved theexistence of solutions for corresponding boundary Value problems under these conditions.展开更多
A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive...A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive solutions are given in terms of their asymptotic magnitudes, and necessary as well as sufficient conditions for the existence of these solutions are also obtained.展开更多
In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution...In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.展开更多
In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich a...In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich and Chatterjea nonexpansive mappings in a Banach space using the Krasnoselskii-Ishikawa iteration method associated withSλand consider some applications of our results to prove the existence of solutions for nonlinear integral and nonlinear fractional differential equations.We also establish certain interesting examples to illustrate the usability of our results.展开更多
In this paper, n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u-u...In this paper, n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u-uh = O(hn+2), n ≥ 2, at (n + 1)-order Lobatto points in each element respectively is proved. Finally the theoretical results are tested by a numerical example.展开更多
In this paper,a sufficient conditions to guarantee the existence and stability of solutions for generalized nonlinear fractional differential equations of orderα(1<α<2)are given.The main results are obtained b...In this paper,a sufficient conditions to guarantee the existence and stability of solutions for generalized nonlinear fractional differential equations of orderα(1<α<2)are given.The main results are obtained by using Krasnoselskii's fixed point theorem in a weighted Banach space.Two examples are given to demonstrate the validity of the proposed results.展开更多
In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improv...In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improved, so it is especially suitable for large scale systems. For Brown’s equations, an existing article reported that when the dimension of the equation N = 40, the subroutines they used could not give a solution, as compared with our method, we can easily solve this equation even when N = 100. Other two large equations have the dimension of N = 1000, all the existing available methods have great difficulties to handle them, however, our method proposed in this paper can deal with those tough equations without any difficulties. The sigularity and choosing initial values problems were also mentioned in this paper.展开更多
We study a nonlinear differential equations in the Banach space of real functions and continuous on a bounded and closed interval. With the help of a suitable theorems (fixed point) and some boundary conditions, the 5...We study a nonlinear differential equations in the Banach space of real functions and continuous on a bounded and closed interval. With the help of a suitable theorems (fixed point) and some boundary conditions, the 5th order nonlinear differential equations has at least one positive solution.展开更多
The development of mathematical modeling of infectious diseases is a key research area in various elds including ecology and epidemiology.One aim of these models is to understand the dynamics of behavior in infectious...The development of mathematical modeling of infectious diseases is a key research area in various elds including ecology and epidemiology.One aim of these models is to understand the dynamics of behavior in infectious diseases.For the new strain of coronavirus(COVID-19),there is no vaccine to protect people and to prevent its spread so far.Instead,control strategies associated with health care,such as social distancing,quarantine,travel restrictions,can be adopted to control the pandemic of COVID-19.This article sheds light on the dynamical behaviors of nonlinear COVID-19 models based on two methods:the homotopy perturbation method(HPM)and the modied reduced differential transform method(MRDTM).We invoke a novel signal ow graph that is used to describe the COVID-19 model.Through our mathematical studies,it is revealed that social distancing between potentially infected individuals who are carrying the virus and healthy individuals can decrease or interrupt the spread of the virus.The numerical simulation results are in reasonable agreement with the study predictions.The free equilibrium and stability point for the COVID-19 model are investigated.Also,the existence of a uniformly stable solution is proved.展开更多
This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measur...This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measurability of the solution set of a hemivariational inequality is established.By using a fixed point theorem for a condensing setvalued map,the nonemptiness and compactness of the set of mild solutions are also obtained for such a system under mild conditions.Finally,an example is presented to illustrate our main results.展开更多
A kind of mathematical programs with equilibrium constraints (MPEC) is studied. By using the idea of successive approximation, a smoothing nonlinear programming, which is equivalent to the MPEC problem, is proposed....A kind of mathematical programs with equilibrium constraints (MPEC) is studied. By using the idea of successive approximation, a smoothing nonlinear programming, which is equivalent to the MPEC problem, is proposed. Thereby, it is ensured that some classical optimization methods can be applied for the MPEC problem. In the end, two algorithm models are proposed with the detail analysis of the global convergence.展开更多
This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity ...This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity of polynomial autonomuos differential systems and develop an explicit formula for the leading asymptotic term of diverging solutions to critical points at infinity. Applications to problems of completeness and incompleteness (the existence and nonexistence respectively of global solutions) of dynamical systems are provided. In particular a quadratic competing species model and the Lorentz equations are being used as arenas where our technique is applied. The study is also relevant to the Painlevé property and to questions of integrability of dynamical systems.展开更多
In this article, the author employs the conical expansion and compression fixed point principle and the fixed point index theory to show that there exist at least two positive solutions for a higher order BVP.
文摘Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.
基金the support of CSIR,Govt.of India,Grant No.-25(0215)/13/EMR-II
文摘In this paper, we introduce new concepts of a-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in [21, 22] and different from a-GF-contractions given in [8]. Then, sufficient conditions for the existence and uniqueness of fixed point are established for these new types of contractive mappings, in the setting of complete metric space. Consequently, the obtained results encompass various generalizations of the Banach contraction principle. Moreover, some examples and an application to nonlinear fractional differential equation are given to illustrate the usability of the new theory.
基金Supported by the National Nature Science Foundation of China(11071001)Supported by the Key Program of Ministry of Education of China(205068)
文摘In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.
文摘By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.
文摘In this paper, the two and three-point boundary Problems (with nonlinearboundary conditions) for the general nonlinear differential equations of fourth orderare discussed. We have set some groups of the assumption conditions and Proved theexistence of solutions for corresponding boundary Value problems under these conditions.
文摘A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive solutions are given in terms of their asymptotic magnitudes, and necessary as well as sufficient conditions for the existence of these solutions are also obtained.
基金Supported by the NNSF of China(ll071001) Supported by the NSF" of the Anhui Higher Education Institutions of China(KJ2013B276) Supporied by the Key Program of the Natural Science Foundation for the Excellent Youth Scholars of Anhui Higher Education Institutions of China (2013SQRL142ZD)
文摘In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.
文摘In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich and Chatterjea nonexpansive mappings in a Banach space using the Krasnoselskii-Ishikawa iteration method associated withSλand consider some applications of our results to prove the existence of solutions for nonlinear integral and nonlinear fractional differential equations.We also establish certain interesting examples to illustrate the usability of our results.
基金The work was supported in part by the Special Funds of State Major Basic Research Projects (Grant No.1999032804) by scientific Research Fund of Hunan Provincial Education Department (03C508).
文摘In this paper, n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u-uh = O(hn+2), n ≥ 2, at (n + 1)-order Lobatto points in each element respectively is proved. Finally the theoretical results are tested by a numerical example.
文摘In this paper,a sufficient conditions to guarantee the existence and stability of solutions for generalized nonlinear fractional differential equations of orderα(1<α<2)are given.The main results are obtained by using Krasnoselskii's fixed point theorem in a weighted Banach space.Two examples are given to demonstrate the validity of the proposed results.
文摘In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improved, so it is especially suitable for large scale systems. For Brown’s equations, an existing article reported that when the dimension of the equation N = 40, the subroutines they used could not give a solution, as compared with our method, we can easily solve this equation even when N = 100. Other two large equations have the dimension of N = 1000, all the existing available methods have great difficulties to handle them, however, our method proposed in this paper can deal with those tough equations without any difficulties. The sigularity and choosing initial values problems were also mentioned in this paper.
文摘We study a nonlinear differential equations in the Banach space of real functions and continuous on a bounded and closed interval. With the help of a suitable theorems (fixed point) and some boundary conditions, the 5th order nonlinear differential equations has at least one positive solution.
基金funded by“Taif University Researchers Supporting Project Number(TURSP-2020/16),Taif University,Taif,Saudi Arabia.”。
文摘The development of mathematical modeling of infectious diseases is a key research area in various elds including ecology and epidemiology.One aim of these models is to understand the dynamics of behavior in infectious diseases.For the new strain of coronavirus(COVID-19),there is no vaccine to protect people and to prevent its spread so far.Instead,control strategies associated with health care,such as social distancing,quarantine,travel restrictions,can be adopted to control the pandemic of COVID-19.This article sheds light on the dynamical behaviors of nonlinear COVID-19 models based on two methods:the homotopy perturbation method(HPM)and the modied reduced differential transform method(MRDTM).We invoke a novel signal ow graph that is used to describe the COVID-19 model.Through our mathematical studies,it is revealed that social distancing between potentially infected individuals who are carrying the virus and healthy individuals can decrease or interrupt the spread of the virus.The numerical simulation results are in reasonable agreement with the study predictions.The free equilibrium and stability point for the COVID-19 model are investigated.Also,the existence of a uniformly stable solution is proved.
基金supported by the National Natural Science Foundation of China(11471230,11671282)。
文摘This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measurability of the solution set of a hemivariational inequality is established.By using a fixed point theorem for a condensing setvalued map,the nonemptiness and compactness of the set of mild solutions are also obtained for such a system under mild conditions.Finally,an example is presented to illustrate our main results.
基金project supported by the National Natural Science Foundation of China(Nos.10501009 and 60471039)the Natural Science Foundation of Guangxi Province(No.0728206)
文摘A kind of mathematical programs with equilibrium constraints (MPEC) is studied. By using the idea of successive approximation, a smoothing nonlinear programming, which is equivalent to the MPEC problem, is proposed. Thereby, it is ensured that some classical optimization methods can be applied for the MPEC problem. In the end, two algorithm models are proposed with the detail analysis of the global convergence.
文摘This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity of polynomial autonomuos differential systems and develop an explicit formula for the leading asymptotic term of diverging solutions to critical points at infinity. Applications to problems of completeness and incompleteness (the existence and nonexistence respectively of global solutions) of dynamical systems are provided. In particular a quadratic competing species model and the Lorentz equations are being used as arenas where our technique is applied. The study is also relevant to the Painlevé property and to questions of integrability of dynamical systems.
基金the National Natural Science Foundation of China (No.19671052) and Postdoctorate Foundation of Zhengzhou Uniyersity.
文摘In this article, the author employs the conical expansion and compression fixed point principle and the fixed point index theory to show that there exist at least two positive solutions for a higher order BVP.