A novel nonlinear gray transform method is proposed to enhance the contrast of a typhoon cloud image.Generally,the typhoon cloud image obtained by a satellite cannot be directly used to make an accurate prediction of ...A novel nonlinear gray transform method is proposed to enhance the contrast of a typhoon cloud image.Generally,the typhoon cloud image obtained by a satellite cannot be directly used to make an accurate prediction of the typhoon's center or intensity because the contrast of the received typhoon cloud image may be bad.Our aim is to extrude the typhoon's eye in the typhoon cloud image.A normalized arc-tangent transformation operation is designed to enhance global contrast of the typhoon cloud image.Differential evolution algorithm is used to choose the optimal nonlinear transform parameter.Finally,geodesic activity contour model is used to extract the typhoon's eye to verify the performance of the proposed method.Experimental results show that the proposed method can efficiently enhance the global contrast of the typhoon cloud image while greatly extruding the typhoon's eye.展开更多
The purpose of this study is to present an application of a novel enhancement technique for enhancing medical images generated from X-rays. The method presented in this study is based on a nonlinear partial differenti...The purpose of this study is to present an application of a novel enhancement technique for enhancing medical images generated from X-rays. The method presented in this study is based on a nonlinear partial differential equation (PDE) model, Kramer's PDE model. The usefulness of this method is investigated by experimental results. We apply this method to a medical X-ray image. For comparison, the X-ray image is also processed using classic Perona-Malik PDE model and Catte PDE model. Although the Perona-Malik model and Catte PDE model could also enhance the image, the quality of the enhanced images is considerably inferior compared with the enhanced image using Kramer's PDE model. The study suggests that the Kramer's PDE model is capable of enhancing medical X-ray images, which will make the X-ray images more reliable.展开更多
In this paper,an orthogonal-directional forward diffusion Partial Differential Equation(PDE) image inpainting and denoising model which processes image based on variation problem is proposed.The novel model restores t...In this paper,an orthogonal-directional forward diffusion Partial Differential Equation(PDE) image inpainting and denoising model which processes image based on variation problem is proposed.The novel model restores the damaged information and smoothes the noise in image si-multaneously.The model is morphological invariant which processes image based on the geometrical property.The regularization item of it diffuses along and cross the isophote,and then the known image information is transported into the target region through two orthogonal directions.The cross isophote diffusion part is the TV(Total Variation) equation and the along isophote diffusion part is the inviscid Helmholtz vorticity equation.The equivalence between the Helmholtz equation and the inpainting PDEs is proved.The model with the fidelity item which is used in the whole image domain denoises while preserving edges.So the novel model could inpaint and denoise simultaneously.Both theoretical analysis and experiments have verified the validity of the novel model proposed in this paper.展开更多
We classify initial-value problems for extended KdV-Burgers equations via generalized conditional symmetries. These equations can be reduced to Cauchy problems for some systems of first-order ordinary differential equ...We classify initial-value problems for extended KdV-Burgers equations via generalized conditional symmetries. These equations can be reduced to Cauchy problems for some systems of first-order ordinary differential equations. The obtained reductions cannot be derived within the framework of the standard Lie approach.展开更多
Using Girsanov transformation,we derive a new link from stochastic differential equations of Markovian type to nonlinear parabolic equations of Burgers-KPZ type,in such a manner that the obtained BurgersKPZ equation c...Using Girsanov transformation,we derive a new link from stochastic differential equations of Markovian type to nonlinear parabolic equations of Burgers-KPZ type,in such a manner that the obtained BurgersKPZ equation characterizes the path-independence property of the density process of Girsanov transformation for the stochastic differential equation.Our assertion also holds for SDEs on a connected differential manifold.展开更多
In this article,non-linear time-fractional diffusion equations are considered to describe oil pollution in the water.The latest technique,fractional reduced differential transform method(FRDTM),is used to ac-quire app...In this article,non-linear time-fractional diffusion equations are considered to describe oil pollution in the water.The latest technique,fractional reduced differential transform method(FRDTM),is used to ac-quire approximate solutions of the time fractional-order diffusion equation and two cases of Allen-Cahn equations.The acquired results are collated with the exact solutions and other results from literature for integer-orderα,which reveal that the proposed method is effective.Hence,FRDTM can be employed to obtain solutions for different types of nonlinear fractional-order IVPs arising in engineering and science.展开更多
基金supported by National Natural Science Foundation of China (No. 40805048,No. 11026226)Typhoon Research Foundation of Shanghai Typhoon Institute/China Meteorological Administration (No. 2008ST01)+1 种基金Research Foundation of State Key Laboratory of Remote Sensing Science,Jointly sponsored by the Instituteof Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University (No. 2009KFJJ013)Research Foundation of State Key Laboratory of Severe Weather/Chinese Academy of Meteorological Sciences (No. 2008LASW-B03)
文摘A novel nonlinear gray transform method is proposed to enhance the contrast of a typhoon cloud image.Generally,the typhoon cloud image obtained by a satellite cannot be directly used to make an accurate prediction of the typhoon's center or intensity because the contrast of the received typhoon cloud image may be bad.Our aim is to extrude the typhoon's eye in the typhoon cloud image.A normalized arc-tangent transformation operation is designed to enhance global contrast of the typhoon cloud image.Differential evolution algorithm is used to choose the optimal nonlinear transform parameter.Finally,geodesic activity contour model is used to extract the typhoon's eye to verify the performance of the proposed method.Experimental results show that the proposed method can efficiently enhance the global contrast of the typhoon cloud image while greatly extruding the typhoon's eye.
文摘The purpose of this study is to present an application of a novel enhancement technique for enhancing medical images generated from X-rays. The method presented in this study is based on a nonlinear partial differential equation (PDE) model, Kramer's PDE model. The usefulness of this method is investigated by experimental results. We apply this method to a medical X-ray image. For comparison, the X-ray image is also processed using classic Perona-Malik PDE model and Catte PDE model. Although the Perona-Malik model and Catte PDE model could also enhance the image, the quality of the enhanced images is considerably inferior compared with the enhanced image using Kramer's PDE model. The study suggests that the Kramer's PDE model is capable of enhancing medical X-ray images, which will make the X-ray images more reliable.
基金the National Natural Science Foundation of China(No.60472033, No.60672062)the National Grand Fundamental Research 973 Program of China(No. 2004CB318005)the Technological Innovation Fund of Excellent Doctorial Candidate of Beijing Jiaotong University(No.48026)
文摘In this paper,an orthogonal-directional forward diffusion Partial Differential Equation(PDE) image inpainting and denoising model which processes image based on variation problem is proposed.The novel model restores the damaged information and smoothes the noise in image si-multaneously.The model is morphological invariant which processes image based on the geometrical property.The regularization item of it diffuses along and cross the isophote,and then the known image information is transported into the target region through two orthogonal directions.The cross isophote diffusion part is the TV(Total Variation) equation and the along isophote diffusion part is the inviscid Helmholtz vorticity equation.The equivalence between the Helmholtz equation and the inpainting PDEs is proved.The model with the fidelity item which is used in the whole image domain denoises while preserving edges.So the novel model could inpaint and denoise simultaneously.Both theoretical analysis and experiments have verified the validity of the novel model proposed in this paper.
基金Supported by the National Natural Science Foundation of China under Grant No 10447007, and the Natural Science Foundation of Shaanxi Province under Grant No 2005A13.
文摘We classify initial-value problems for extended KdV-Burgers equations via generalized conditional symmetries. These equations can be reduced to Cauchy problems for some systems of first-order ordinary differential equations. The obtained reductions cannot be derived within the framework of the standard Lie approach.
基金supported by Laboratory of Mathematics and Complex Systems,National Natural Science Foundation of China(Grant No.11131003)Specialized Research Fund for the Doctoral Program of Higher Educationthe Fundamental Research Funds for the Central Universities
文摘Using Girsanov transformation,we derive a new link from stochastic differential equations of Markovian type to nonlinear parabolic equations of Burgers-KPZ type,in such a manner that the obtained BurgersKPZ equation characterizes the path-independence property of the density process of Girsanov transformation for the stochastic differential equation.Our assertion also holds for SDEs on a connected differential manifold.
文摘In this article,non-linear time-fractional diffusion equations are considered to describe oil pollution in the water.The latest technique,fractional reduced differential transform method(FRDTM),is used to ac-quire approximate solutions of the time fractional-order diffusion equation and two cases of Allen-Cahn equations.The acquired results are collated with the exact solutions and other results from literature for integer-orderα,which reveal that the proposed method is effective.Hence,FRDTM can be employed to obtain solutions for different types of nonlinear fractional-order IVPs arising in engineering and science.