We feature the stationary solutions of the 3D complex cubic-quintic Ginzburg-Landau equation (CGLE). Our approach is based on collective variables approach which helps to obtain a system of variational equations, givi...We feature the stationary solutions of the 3D complex cubic-quintic Ginzburg-Landau equation (CGLE). Our approach is based on collective variables approach which helps to obtain a system of variational equations, giving the evolution of the light pulses parameters as a function of the propagation distance. The collective variables approach permits us to obtain, efficiently, a global mapping of the 3D stationary dissipative solitons. In addition it allows describing the influence of the parameters of the equation on the various physical parameters of the pulse and their dynamics. Thus it helps to show the impact of dispersion and nonlinear gain on the stationary dynamic.展开更多
This paper makes qualitative analysis to the bounded traveling wave solutions for a kind of nonlinear dispersive-dissipative equation, and considers its solving problem. The relation is investigated between behavior o...This paper makes qualitative analysis to the bounded traveling wave solutions for a kind of nonlinear dispersive-dissipative equation, and considers its solving problem. The relation is investigated between behavior of its solution and the dissipation coefficient. Further, all approximate damped oscillatory solutions when dissipation coefficient is small are presented by utilizing the method of undetermined coefficients according to the theory of rotated vector field in planar dynamical systems. Finally, error estimate is given by establishing the integral equation which reflects the relation between approximate and exact damped oscillatory solutions applying the idea of homogenization principle.展开更多
文摘We feature the stationary solutions of the 3D complex cubic-quintic Ginzburg-Landau equation (CGLE). Our approach is based on collective variables approach which helps to obtain a system of variational equations, giving the evolution of the light pulses parameters as a function of the propagation distance. The collective variables approach permits us to obtain, efficiently, a global mapping of the 3D stationary dissipative solitons. In addition it allows describing the influence of the parameters of the equation on the various physical parameters of the pulse and their dynamics. Thus it helps to show the impact of dispersion and nonlinear gain on the stationary dynamic.
基金Supported by the National Natural Science Foundation of China(No.11471215)
文摘This paper makes qualitative analysis to the bounded traveling wave solutions for a kind of nonlinear dispersive-dissipative equation, and considers its solving problem. The relation is investigated between behavior of its solution and the dissipation coefficient. Further, all approximate damped oscillatory solutions when dissipation coefficient is small are presented by utilizing the method of undetermined coefficients according to the theory of rotated vector field in planar dynamical systems. Finally, error estimate is given by establishing the integral equation which reflects the relation between approximate and exact damped oscillatory solutions applying the idea of homogenization principle.
基金Supported by the NSF of China(10971203)the Tianyuan Mathematics Foundation of NSF of China(11026154)+1 种基金the NSF of the Education Department of Henan Province(2010A1100182011A110020)