The calcium fluoride(CaF_(2))whispering gallery mode crystalline resonator is an excellent platform for nonlinear optical applications because of the decreasing in threshold caused by ultrahigh quality(Q)factor.In thi...The calcium fluoride(CaF_(2))whispering gallery mode crystalline resonator is an excellent platform for nonlinear optical applications because of the decreasing in threshold caused by ultrahigh quality(Q)factor.In this paper,we achieved the observation of Raman lasing,first-order Raman comb,and second-order Raman lasing in a CaF_(2)disk resonator with a diameter of 4.96 mm and an ultrahigh-Q of 8.43×10^(8)at 1550-nm wavelength.We also observed thermal effects in CaF_(2)disk resonator,and the threshold of thermo-optical oscillation is approximately coincident with Raman lasing,since the intracavity power increases rapidly when the power reaches the threshold,and higher input pump power results in longer thermal drift and higher Raman emission power.With a further increase in pump power,the optical frequency combs range is from 1520 nm to 1650 nm,with a wavelength interval of 4×FSR.It is a promising candidate for optical communication,biological environment monitoring,spectral analysis,and microwave signal sources.展开更多
In this work,a new structure is used to enhance the nonlinear effect in the cavity,which improvesthe performance of the 1.3μm broadband swept source.The swept source adopts a semiconductoroptical amplifier(SOA),a cir...In this work,a new structure is used to enhance the nonlinear effect in the cavity,which improvesthe performance of the 1.3μm broadband swept source.The swept source adopts a semiconductoroptical amplifier(SOA),a circulator,a coupler,and a tunable filter.In the structure,the lightpasses through the nonlinear medium(SOA)twice in two opposite directions,which excites thenonlinear ffect and increases the performance of the swept source.The tunable filter is based on apolygon rotating mirror and gratings.Traditionally,multiple SOAs are adopted to improve thesweep range and the optical power,which increases the cost and complexity of the swept source.The method proposed in this paper can improve the spectral range and optical power of the sweptsources without additional accessories.For the short-cavity swept source,the power increasesfrom 6 mW to 7.7 mW,and the sweep range increases from 98 nm to 120 nm.The broadband swept sources could have wide applications in biomedical imaging,sensor system,measurementand so on.展开更多
Materials,where charge carriers have a linear energy dispersion,usually exhibit a strong nonlinear optical response in the absence of disorder scattering.This nonlinear response is particularly interesting in the tera...Materials,where charge carriers have a linear energy dispersion,usually exhibit a strong nonlinear optical response in the absence of disorder scattering.This nonlinear response is particularly interesting in the terahertz frequency region.We present a theoretical and numerical investigation of charge transport and nonlinear effects,such as the high harmonic generation in topological materials including Weyl semimetals(WSMs)and α-T_(3)systems.The nonlinear optical conductivity is calculated both semi-classically using the velocity operator and quantum mechanically using the density matrix.We show that the nonlinear response is strongly dependent on temperature and topological parameters,such as the Weyl point(WP)separation b and Berry phase ФB.A finite spectral gap opening can further modify the nonlinear effects.Under certain parameters,universal behaviors of both the linear and nonlinear response can be observed.Coupled with experimentally accessible critical field values of 10^(4)-10^(5) V=m,our results provide useful information on developing nonlinear optoelectronic devices based on topological materials.展开更多
This talk will discuss the types of optical signal degradation due to fiber nonlinearity and review recently invented fibers for suppressing the effects. It also introduces efficiency of highly nonlinear fibers and th...This talk will discuss the types of optical signal degradation due to fiber nonlinearity and review recently invented fibers for suppressing the effects. It also introduces efficiency of highly nonlinear fibers and their applications to nonlinear signal processing.展开更多
In the present paper, we use the Markov-switching model to test the nonlinear effects of government expenditure and taxes on private consumption in China. The results show that fiscal policy in China has a significant...In the present paper, we use the Markov-switching model to test the nonlinear effects of government expenditure and taxes on private consumption in China. The results show that fiscal policy in China has a significantly nonlinear effect. In years 1978-1980 and 1984- 1997, the effect of government consumption on private consumption is non-Keynesian. During the same periods, the effect of taxes is also non-Keynesian, but the effect is not significant. The effect of government investment is linear but asymmetric. After retesting the reasons for the existence of nonlinear effects, we find that in China initial fiscal conditions and the magnitude of fiscal consolidations are not related to the nonlinear effects of fiscal policy. The government should pay close attention to the characteristics of commodity and labor markets to identify the conditions and regimes associated with nonlinear effects.展开更多
A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The cont...A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The continuous inhomogeneous models of equivalent porosity and permeability are proposed for the whole shale gas reservoir includ- ing the hydraulic fracture, the micro-fracture, and the matrix regions. The corresponding semi-analytical method is developed by transforming the nonlinear partial differential governing equation into the integral equation and the numerical discretization. The nonlinear multi-scale effects of slippage and diffusion and the pressure dependent effect of desorption on the shale gas production are investigated.展开更多
Knowledge of asymmetric catalytic reaction mechanism is very important for rational design and synthesis of new chiral catalysts or catalytic systems with high catalytic activity and stereoselectivity.The studies of n...Knowledge of asymmetric catalytic reaction mechanism is very important for rational design and synthesis of new chiral catalysts or catalytic systems with high catalytic activity and stereoselectivity.The studies of nonlinear effect have attracted wide attentions as a simple and practical mechanistic tool to probe complex asymmetric catalytic reactions.展开更多
In this paper, we using phase plane method have derived the stability criteria of linear and nonlinear Rossby waves under the conditions of semi-geostrophic approximation and have gotten the solutions and geostrophic ...In this paper, we using phase plane method have derived the stability criteria of linear and nonlinear Rossby waves under the conditions of semi-geostrophic approximation and have gotten the solutions and geostrophic vorticity of corresponding solitary Rossby waves. It is pointed out that the wave stability is connected with the distribution of zonal flow and when the zonal flow is different the solitary wave trough or ridge is formed.展开更多
Nonlinear effect is of importance to waves propagating from deep water to shallow water. The non-linearity of waves is widely discussed due to its high precision in application. But there are still some problems in de...Nonlinear effect is of importance to waves propagating from deep water to shallow water. The non-linearity of waves is widely discussed due to its high precision in application. But there are still some problems in dealing with the nonlinear waves in practice. In this paper, a modified form of mild-slope equation with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation. The modified form of mild-slope equation is convenient to solve nonlinear effect of waves. The model is tested against the laboratory measurement for the case of a submerged elliptical shoal on a slope beach given by Berkhoff et al. The present numerical results are also compared with those obtained through linear wave theory. Better agreement is obtained as the modified mild-slope equation is employed. And the modified mild-slope equation can reasonably simulate the weakly nonlinear effect of wave propagation from deep water to coast.展开更多
Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measure...Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector-camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method.展开更多
Accurate prediction of the offshore structure motion response and associate mooring line tension is important in both technical applications and scientific research. In our study, a truss spar platform, operated in Gu...Accurate prediction of the offshore structure motion response and associate mooring line tension is important in both technical applications and scientific research. In our study, a truss spar platform, operated in Gulf of Mexico, is numerically simulated and analyzed by an in-house numerical code 'COUPLE'. Both the platform motion responses and associated mooring line tension are calculated and investigated through a time domain nonlinear coupled dynamic analysis. Satisfactory agreement between the simulation and corresponding field measurements is in general reached, indicating that the numerical code can be used to conduct the time-domain analysis of a truss spar interacting with its mooting and riser system. Based on the comparison between linear and nonlinear results, the relative importance of nonlinearity in predicting the platform motion response and mooring line tensions is assessed and presented. Through the coupled and quasi-static analysis, the importance of the dynamic coupling effect between the platform hull and the mooting/riser system in predicting the mooting line tension and platform motions is quantified. These results may provide essential information pertaining to facilitate the numerical simulation and design of the large scale offshore structures.展开更多
The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathema...The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathematical model of the problem is built,in which the Gaussian distribution is used to describe the inhomogeneous intrinsic permeability.Based on the Boltzmann transformation,an efficient semi-analytical method is proposed.The problem is then converted into a nonlinear equation in an integral form for the pressure field,and a related explicit iteration scheme is constructed by numerical discretization.The validation examples show that the proposed method has good convergence,and the simulation results also agree well with the results obtained from both numerical and actual data of two vertical fractured test wells in the literature.Desorption,slippage,and diffusion have significant influence on shale gas flows.The accuracy of the usual technique that the product of viscosity and compressibility is approximated as its value at the average formation pressure is examined.展开更多
Based on the nonlinear theory of acoustoelasticity, considering the triaxial terrestrial stress, the fluid static pressure in the borehole and the fluid nonlinear effect jointly, the dispersion curves of the monopole ...Based on the nonlinear theory of acoustoelasticity, considering the triaxial terrestrial stress, the fluid static pressure in the borehole and the fluid nonlinear effect jointly, the dispersion curves of the monopole Stoneley wave and dipole flexural wave prop- agating along the borehole axis in a homogeneous isotropic formation are investigated by using the perturbation method. The relation of the sensitivity coefficient and the velocity-stress coefficient to frequency are also analyzed. The results show that variations of the phase velocity dispersion curve are mainly affected by three sensitivity coefficients related to third-order elastic constant. The borehole stress concentration causes a split of the flexural waves and an intersection of the dispersion curves of the flexural waves polarized in directions parallel and normal to the uniaxial horizontal stress direction. The stress-induced formation anisotropy is only dependent on the horizontal deviatoric terrestrial stress and independent of the horizontal mean terrestrial stress, the superimposed stress and the fluid static pressure. The horizontal terrestrial stress ratio ranging from 0 to 1 reduces the stress-induced formation anisotropy. This makes the intersection of flexural wave dispersion curves not distinguishable. The effect of the fluid nonlinearity on the dispersion curve of the mode wave is small and can be ignored.展开更多
Propertiss of damping electrons in collision with photons based onmulti- photon nonlinear Compton effect are investigated. Theexpressions of the differential scattering section are derived.Several useful conclusions a...Propertiss of damping electrons in collision with photons based onmulti- photon nonlinear Compton effect are investigated. Theexpressions of the differential scattering section are derived.Several useful conclusions are drawn.展开更多
A chiral lanthanide metal-organic framework based on enantiopure camphoric acid (D-H2cam), [Nd3(D-cam)8(H2O)4Cl]n (1), has been synthesized and characterized by single-crystal X-ray structural analysis, elemen...A chiral lanthanide metal-organic framework based on enantiopure camphoric acid (D-H2cam), [Nd3(D-cam)8(H2O)4Cl]n (1), has been synthesized and characterized by single-crystal X-ray structural analysis, elemental analysis, IR, thermal gravimetric, and X-ray powder diffraction. Crystal data for the title compound are as follows: orthorhombic system, space group P212121 with a = 13.8287(7), b = 14.0715(7), c = 25.7403(12) A^°, V = 5008.8(4) A^°3, Mr = 1333.08, Z = 4, F(000) = 2644, Dc = 1.768 g/cm^3, μ(MoKα) = 3.189 mm^-1, the final R = 0.0351 and wR = 0.0814 (I 〉 2σ(I)). Compound 1 displays an 8-connected bcu topology 3D framework and hydrogen-bonding interactions stabilize the solid-state structure. The vibrational circular dichroism (VCD) spectrum and second-order nonlinear optical effect of compound 1 have been studied in the solid state.展开更多
We present an analytical model for cross-Kerr nonlinear coefficient in a four-level N-type atomic medium under Doppler broadening.The model is applied to87 Rb atoms to analyze the dependence of the cross-Kerr nonlinea...We present an analytical model for cross-Kerr nonlinear coefficient in a four-level N-type atomic medium under Doppler broadening.The model is applied to87 Rb atoms to analyze the dependence of the cross-Kerr nonlinear coefficient on the external light field and the temperature of atomic vapor.The analysis shows that in the absence of electromagnetically induced transparency(EIT)the cross-Kerr nonlinear coefficient is zero,but it is significantly enhanced when the EIT is established.It means that the cross-Kerr effect can be turned on/off when the external light field is on or off.Simultaneously,the amplitude and the sign of the cross-Kerr nonlinear coefficient are easily changed according to the intensity and frequency of the external light field.The amplitude of the cross-Kerr nonlinear coefficient remarkably decreases when the temperature of atomic medium increases.The analytical model can be convenient to fit experimental observations and applied to photonic devices.展开更多
By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical res...By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical results indicate that the higher-order effects can badly distort self-similar parabolic pulse shape and optical spectrum, and at the same time the peak shift and oscillation appear, while the pulse still reveals highly linear chirp but grows into asymmetry. The influence of different higher-order effects on self-similar parabolic pulse propagation has been analysed. It shows that the self-steepening plays a more important role. We can manipulate the geometrical parameters of the microstructured fibre amplifier to gain a suitable dispersion and nonlinearity coefficient which will keep high-quality self-similar parabolic pulse propagation. These results are significant for the further study of self-similar parabolic pulse propagation.展开更多
An effective nonlinear response of a nonlinear composite with spherical coated inclusions randomly embedded in a host medium under the action of an external AC electric field, Ea= E1 sin(wt) + E3 sin(3wt), is inv...An effective nonlinear response of a nonlinear composite with spherical coated inclusions randomly embedded in a host medium under the action of an external AC electric field, Ea= E1 sin(wt) + E3 sin(3wt), is investigated using a perturbation method. The local potentials of the composite at higher harmonics are given both in the region of local inclusion particles and in the local host region under the external AC electric field. All effective nonlinear responses of the composite and the relationship between the effective nonlinear responses at the fundamental frequency and third harmonics are also studied for spherical coated inclusion in a dilute limit.展开更多
The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) e...The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) electric field E app = E 0(1 + sin ωt).The dielectric profile of the cylindrical inclusions is modeled by function ε i(r) = C k r k(r ≤ a),where r is the radius of the cylindrical inclusion,and C k,k,a are parameters.In the dilute limit,the local potentials and the effective nonlinear responses at all harmonics are derived.Meanwhile,the general effective nonlinear responses are also derived and compared with the effective nonlinear responses at harmonics under the AC and DC external field.It is found that the effective nonlinear AC and DC responses at harmonics can be calculated by those of the general effective nonlinear of the graded composites under the external DC electric field.Moreover,the obtained local electrical fields show that the electrical field distribution in the cylindrical inclusions is controllable,and the maximum of the electric field inside the cylinder is at its center.展开更多
A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and...A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom(MDOF) system is approximated by using the modal energy-decomposition. Energybased base shear coefficients are verified by means of both pushover analysis and nonlinear time history(NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51727808,51922009,52005457,and 62004179)the Fund from the Key Laboratory of Quantum Sensing and Precision Measurement of Shanxi Province,China(Grant No.201905D121001)。
文摘The calcium fluoride(CaF_(2))whispering gallery mode crystalline resonator is an excellent platform for nonlinear optical applications because of the decreasing in threshold caused by ultrahigh quality(Q)factor.In this paper,we achieved the observation of Raman lasing,first-order Raman comb,and second-order Raman lasing in a CaF_(2)disk resonator with a diameter of 4.96 mm and an ultrahigh-Q of 8.43×10^(8)at 1550-nm wavelength.We also observed thermal effects in CaF_(2)disk resonator,and the threshold of thermo-optical oscillation is approximately coincident with Raman lasing,since the intracavity power increases rapidly when the power reaches the threshold,and higher input pump power results in longer thermal drift and higher Raman emission power.With a further increase in pump power,the optical frequency combs range is from 1520 nm to 1650 nm,with a wavelength interval of 4×FSR.It is a promising candidate for optical communication,biological environment monitoring,spectral analysis,and microwave signal sources.
基金supported by the National Key R&D Program of China(2016YFF0102003 and 2016YFF0102000).
文摘In this work,a new structure is used to enhance the nonlinear effect in the cavity,which improvesthe performance of the 1.3μm broadband swept source.The swept source adopts a semiconductoroptical amplifier(SOA),a circulator,a coupler,and a tunable filter.In the structure,the lightpasses through the nonlinear medium(SOA)twice in two opposite directions,which excites thenonlinear ffect and increases the performance of the swept source.The tunable filter is based on apolygon rotating mirror and gratings.Traditionally,multiple SOAs are adopted to improve thesweep range and the optical power,which increases the cost and complexity of the swept source.The method proposed in this paper can improve the spectral range and optical power of the sweptsources without additional accessories.For the short-cavity swept source,the power increasesfrom 6 mW to 7.7 mW,and the sweep range increases from 98 nm to 120 nm.The broadband swept sources could have wide applications in biomedical imaging,sensor system,measurementand so on.
文摘Materials,where charge carriers have a linear energy dispersion,usually exhibit a strong nonlinear optical response in the absence of disorder scattering.This nonlinear response is particularly interesting in the terahertz frequency region.We present a theoretical and numerical investigation of charge transport and nonlinear effects,such as the high harmonic generation in topological materials including Weyl semimetals(WSMs)and α-T_(3)systems.The nonlinear optical conductivity is calculated both semi-classically using the velocity operator and quantum mechanically using the density matrix.We show that the nonlinear response is strongly dependent on temperature and topological parameters,such as the Weyl point(WP)separation b and Berry phase ФB.A finite spectral gap opening can further modify the nonlinear effects.Under certain parameters,universal behaviors of both the linear and nonlinear response can be observed.Coupled with experimentally accessible critical field values of 10^(4)-10^(5) V=m,our results provide useful information on developing nonlinear optoelectronic devices based on topological materials.
文摘This talk will discuss the types of optical signal degradation due to fiber nonlinearity and review recently invented fibers for suppressing the effects. It also introduces efficiency of highly nonlinear fibers and their applications to nonlinear signal processing.
基金supported by the Program for New Century Excellent Talents in University(NCET-10-0824)the Program of the Innovative Research Team of the Central University of Finance and Economics and the Program of Statistics Research in China(Grant number:2009LZ032)
文摘In the present paper, we use the Markov-switching model to test the nonlinear effects of government expenditure and taxes on private consumption in China. The results show that fiscal policy in China has a significantly nonlinear effect. In years 1978-1980 and 1984- 1997, the effect of government consumption on private consumption is non-Keynesian. During the same periods, the effect of taxes is also non-Keynesian, but the effect is not significant. The effect of government investment is linear but asymmetric. After retesting the reasons for the existence of nonlinear effects, we find that in China initial fiscal conditions and the magnitude of fiscal consolidations are not related to the nonlinear effects of fiscal policy. The government should pay close attention to the characteristics of commodity and labor markets to identify the conditions and regimes associated with nonlinear effects.
基金supported by the National Basic Research Program of China(973 Program)(No.2013CB228002)
文摘A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The continuous inhomogeneous models of equivalent porosity and permeability are proposed for the whole shale gas reservoir includ- ing the hydraulic fracture, the micro-fracture, and the matrix regions. The corresponding semi-analytical method is developed by transforming the nonlinear partial differential governing equation into the integral equation and the numerical discretization. The nonlinear multi-scale effects of slippage and diffusion and the pressure dependent effect of desorption on the shale gas production are investigated.
基金the National Key R&D Program of China(Grant No.2017YFA0700103)the NSFC(Grant Nos.22225107,21922112,21871258)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB20000000).
文摘Knowledge of asymmetric catalytic reaction mechanism is very important for rational design and synthesis of new chiral catalysts or catalytic systems with high catalytic activity and stereoselectivity.The studies of nonlinear effect have attracted wide attentions as a simple and practical mechanistic tool to probe complex asymmetric catalytic reactions.
文摘In this paper, we using phase plane method have derived the stability criteria of linear and nonlinear Rossby waves under the conditions of semi-geostrophic approximation and have gotten the solutions and geostrophic vorticity of corresponding solitary Rossby waves. It is pointed out that the wave stability is connected with the distribution of zonal flow and when the zonal flow is different the solitary wave trough or ridge is formed.
文摘Nonlinear effect is of importance to waves propagating from deep water to shallow water. The non-linearity of waves is widely discussed due to its high precision in application. But there are still some problems in dealing with the nonlinear waves in practice. In this paper, a modified form of mild-slope equation with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation. The modified form of mild-slope equation is convenient to solve nonlinear effect of waves. The model is tested against the laboratory measurement for the case of a submerged elliptical shoal on a slope beach given by Berkhoff et al. The present numerical results are also compared with those obtained through linear wave theory. Better agreement is obtained as the modified mild-slope equation is employed. And the modified mild-slope equation can reasonably simulate the weakly nonlinear effect of wave propagation from deep water to coast.
基金Project supported by the Science and Technology Major Projects of Zhejiang Province,China(Grant No.2013C03043-5)
文摘Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector-camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method.
文摘Accurate prediction of the offshore structure motion response and associate mooring line tension is important in both technical applications and scientific research. In our study, a truss spar platform, operated in Gulf of Mexico, is numerically simulated and analyzed by an in-house numerical code 'COUPLE'. Both the platform motion responses and associated mooring line tension are calculated and investigated through a time domain nonlinear coupled dynamic analysis. Satisfactory agreement between the simulation and corresponding field measurements is in general reached, indicating that the numerical code can be used to conduct the time-domain analysis of a truss spar interacting with its mooting and riser system. Based on the comparison between linear and nonlinear results, the relative importance of nonlinearity in predicting the platform motion response and mooring line tensions is assessed and presented. Through the coupled and quasi-static analysis, the importance of the dynamic coupling effect between the platform hull and the mooting/riser system in predicting the mooting line tension and platform motions is quantified. These results may provide essential information pertaining to facilitate the numerical simulation and design of the large scale offshore structures.
基金Project supported by the National Program on Key Basic Research Project(973 Program)(No.2013CB228002)
文摘The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathematical model of the problem is built,in which the Gaussian distribution is used to describe the inhomogeneous intrinsic permeability.Based on the Boltzmann transformation,an efficient semi-analytical method is proposed.The problem is then converted into a nonlinear equation in an integral form for the pressure field,and a related explicit iteration scheme is constructed by numerical discretization.The validation examples show that the proposed method has good convergence,and the simulation results also agree well with the results obtained from both numerical and actual data of two vertical fractured test wells in the literature.Desorption,slippage,and diffusion have significant influence on shale gas flows.The accuracy of the usual technique that the product of viscosity and compressibility is approximated as its value at the average formation pressure is examined.
基金The project supported by the National Natural Science Foundation of China(10272004)The Special Science Foundation of the Doctoral Discipline of the Ministry of Education of China(20050001016)
文摘Based on the nonlinear theory of acoustoelasticity, considering the triaxial terrestrial stress, the fluid static pressure in the borehole and the fluid nonlinear effect jointly, the dispersion curves of the monopole Stoneley wave and dipole flexural wave prop- agating along the borehole axis in a homogeneous isotropic formation are investigated by using the perturbation method. The relation of the sensitivity coefficient and the velocity-stress coefficient to frequency are also analyzed. The results show that variations of the phase velocity dispersion curve are mainly affected by three sensitivity coefficients related to third-order elastic constant. The borehole stress concentration causes a split of the flexural waves and an intersection of the dispersion curves of the flexural waves polarized in directions parallel and normal to the uniaxial horizontal stress direction. The stress-induced formation anisotropy is only dependent on the horizontal deviatoric terrestrial stress and independent of the horizontal mean terrestrial stress, the superimposed stress and the fluid static pressure. The horizontal terrestrial stress ratio ranging from 0 to 1 reduces the stress-induced formation anisotropy. This makes the intersection of flexural wave dispersion curves not distinguishable. The effect of the fluid nonlinearity on the dispersion curve of the mode wave is small and can be ignored.
文摘Propertiss of damping electrons in collision with photons based onmulti- photon nonlinear Compton effect are investigated. Theexpressions of the differential scattering section are derived.Several useful conclusions are drawn.
基金supported by National Natural Science Foundation of China(21401147)Basic Research Program of Natural Science from Shaanxi Provincial Government(2015JQ2032)+2 种基金Scientific Research Program from Education Department of Shaanxi Provincial Government(2013JK0654)Opening Foundation from State Key Laboratory of Coordination Chemistry in Nanjing University(201219)the Program for Distinguished Young Scholars of Xi’an Polytechnic University(201403)
文摘A chiral lanthanide metal-organic framework based on enantiopure camphoric acid (D-H2cam), [Nd3(D-cam)8(H2O)4Cl]n (1), has been synthesized and characterized by single-crystal X-ray structural analysis, elemental analysis, IR, thermal gravimetric, and X-ray powder diffraction. Crystal data for the title compound are as follows: orthorhombic system, space group P212121 with a = 13.8287(7), b = 14.0715(7), c = 25.7403(12) A^°, V = 5008.8(4) A^°3, Mr = 1333.08, Z = 4, F(000) = 2644, Dc = 1.768 g/cm^3, μ(MoKα) = 3.189 mm^-1, the final R = 0.0351 and wR = 0.0814 (I 〉 2σ(I)). Compound 1 displays an 8-connected bcu topology 3D framework and hydrogen-bonding interactions stabilize the solid-state structure. The vibrational circular dichroism (VCD) spectrum and second-order nonlinear optical effect of compound 1 have been studied in the solid state.
基金supported by Vietnam’s Ministry of Education and Training under Grant No.B2018-TDV-01SP。
文摘We present an analytical model for cross-Kerr nonlinear coefficient in a four-level N-type atomic medium under Doppler broadening.The model is applied to87 Rb atoms to analyze the dependence of the cross-Kerr nonlinear coefficient on the external light field and the temperature of atomic vapor.The analysis shows that in the absence of electromagnetically induced transparency(EIT)the cross-Kerr nonlinear coefficient is zero,but it is significantly enhanced when the EIT is established.It means that the cross-Kerr effect can be turned on/off when the external light field is on or off.Simultaneously,the amplitude and the sign of the cross-Kerr nonlinear coefficient are easily changed according to the intensity and frequency of the external light field.The amplitude of the cross-Kerr nonlinear coefficient remarkably decreases when the temperature of atomic medium increases.The analytical model can be convenient to fit experimental observations and applied to photonic devices.
基金Project supported by the National Science Foundation of Guangdong Province,China(Grant No04010397)
文摘By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical results indicate that the higher-order effects can badly distort self-similar parabolic pulse shape and optical spectrum, and at the same time the peak shift and oscillation appear, while the pulse still reveals highly linear chirp but grows into asymmetry. The influence of different higher-order effects on self-similar parabolic pulse propagation has been analysed. It shows that the self-steepening plays a more important role. We can manipulate the geometrical parameters of the microstructured fibre amplifier to gain a suitable dispersion and nonlinearity coefficient which will keep high-quality self-similar parabolic pulse propagation. These results are significant for the further study of self-similar parabolic pulse propagation.
基金Project supported by the Natural Science Foundation of Inner Mongolia,China (Grant No.200711020116)the Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences (Grant No.KLOCAW0805)+1 种基金the Research Fund of Higher Education of Inner Mongolia,China (Grant No.NJ09066)the National Natural Science Foundation for Young Scientists of China (Grant No.40806008)
文摘An effective nonlinear response of a nonlinear composite with spherical coated inclusions randomly embedded in a host medium under the action of an external AC electric field, Ea= E1 sin(wt) + E3 sin(3wt), is investigated using a perturbation method. The local potentials of the composite at higher harmonics are given both in the region of local inclusion particles and in the local host region under the external AC electric field. All effective nonlinear responses of the composite and the relationship between the effective nonlinear responses at the fundamental frequency and third harmonics are also studied for spherical coated inclusion in a dilute limit.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.40876094 and JQ10974106)the National High Technology Research and Development Program of China(Grant Nos.2009AA09Z102 and 2008AA09A403)+1 种基金the Excellent Youth Fundation of Shandong Scientific Committee,China(Grant No.JQ201018)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2009AZ002)
文摘The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) electric field E app = E 0(1 + sin ωt).The dielectric profile of the cylindrical inclusions is modeled by function ε i(r) = C k r k(r ≤ a),where r is the radius of the cylindrical inclusion,and C k,k,a are parameters.In the dilute limit,the local potentials and the effective nonlinear responses at all harmonics are derived.Meanwhile,the general effective nonlinear responses are also derived and compared with the effective nonlinear responses at harmonics under the AC and DC external field.It is found that the effective nonlinear AC and DC responses at harmonics can be calculated by those of the general effective nonlinear of the graded composites under the external DC electric field.Moreover,the obtained local electrical fields show that the electrical field distribution in the cylindrical inclusions is controllable,and the maximum of the electric field inside the cylinder is at its center.
文摘A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom(MDOF) system is approximated by using the modal energy-decomposition. Energybased base shear coefficients are verified by means of both pushover analysis and nonlinear time history(NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.