The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving ...The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.展开更多
This paper presents an investigation of the seismic behavior of reinforced concrete(RC)structures in which shear walls are the main lateral load-resisting elements and the participation of flat slab floor systems is n...This paper presents an investigation of the seismic behavior of reinforced concrete(RC)structures in which shear walls are the main lateral load-resisting elements and the participation of flat slab floor systems is not considered in the seismic design procedure.In this regard,the behavior of six prototype structures(with different heights and plan layouts)is investigated through nonlinear static and time history analyses,implemented in the OpenSees platform.The results of the analyses are presented in terms of the behavior of the slab-column connections and their mode of failure at different loading stages.Moreover,the global response of the buildings is discussed in terms of some parameters,such as lateral overstrength due to the gravity flat slab-column frames.According to the nonlinear static analyses,in structures in which the slab-column connections were designed only for gravity loads,the slab-column connections exhibited a punching mode of failure even in the early stages of loading.However,the punching failure was eliminated in structures in which a minimum transverse reinforcement recommended in ACI 318(2019)was provided in the slabs at joint regions.Furthermore,despite neglecting the contribution of gravity flat slab-column frames in the lateral load resistance of the structures,a relatively significant overstrength was imposed on the structures by the gravity frames.展开更多
Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduct...Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduction method was used to study the deep anti-sliding stability of a high gravity dam with a complex dam foundation in response to strong earthquake-induced ground action. Based on static anti-sliding stability analysis of the dam foundation undertaken by decreasing the shear strength parameters of the rock mass in equal proportion, the seismic time history analysis was carried out. The proposed instability criterion for the dynamic strength reduction method was that the peak values of dynamic displacements and plastic strain energy change suddenly with the increase of the strength reduction factor. The elasto-plastic behavior of the dam foundation was idealized using the Drucker-Prager yield criterion based on the associated flow rule assumption. The result of elasto-plastic time history analysis of an overflow dam monolith based on the dynamic strength reduction method was compared with that of the dynamic linear elastic analysis, and the reliability of elasto-plastic time history analysis was confirmed. The results also show that the safety factors of the dam-foundation system in the static and dynamic cases are 3.25 and 3.0, respectively, and that the F2 fault has a significant influence on the anti-sliding stability of the high gravity dam. It is also concluded that the proposed instability criterion for the dynamic strength reduction method is feasible.展开更多
This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects...This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.展开更多
This article is devoted to a time series prediction scheme involving the nonlinear autoregressive algorithm and its applications. The scheme is implemented by means of an artificial neural network containing a hidden ...This article is devoted to a time series prediction scheme involving the nonlinear autoregressive algorithm and its applications. The scheme is implemented by means of an artificial neural network containing a hidden layer. As a training algorithm we use scaled conjugate gradient (SCG) method and the Bayesian regularization (BReg) method. The first method is applied to time series without noise, while the second one can also be applied for noisy datasets. We apply the suggested scheme for prediction of time series arising in oil and gas pricing using 50 and 100 past values. Results of numerical simulations are presented and discussed.展开更多
The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical...The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical results show that the approaches are easy to implement and accurate when applied to the nonlinear space-time fractional derivatives Klein- Gordon equation. This method introduces a promising tool for solving many space-time fractional partial differential equations. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.展开更多
The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its f...The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its foundation. The direct analysis method was based on a rigid limit equilibrium method which regarded both dam and the rock foundation as undeformable rigid bodies. In this method, the safety factor of potential sliding surfaces was computed directly. The second method, the indirect analysis method, was based on elasto-plastic theory and employs nonlinear finite element method (FEM) in the analysis of stresses and deformation in the dam and its foundation. The determination of the safety degree of the structure was based on the convergence and abrupt the change criterion. The results obtained showed that structures' constituent material behavior played an active role in the failure of engineered structures in addition to the imposed load.展开更多
The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measur...The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measured data,a 3D fluctuating wind field considering the tower wind effect is simulated. A novel FE model for buffeting analysis is then presented,in which a specific user-defined Matrix27 element in ANSYS is employed to simulate the aeroelastic forces and its stiffness or damping matrices are parameterized by wind velocity and vibration frequency. A nonlinear time history analysis is carried out to study the influence of the rigid central buckle on the wind-induced buffeting response of a long-span suspension bridge. The results can be used as a reference for wind resistance design of long-span suspension bridges with a rigid central buckle in the future.展开更多
The seismic capacity curves of three types of buildings including frame,frame-shear wall and shear wall ob- tained by pushover analysis under different lateral load patterns are compared with those from nonlinear time...The seismic capacity curves of three types of buildings including frame,frame-shear wall and shear wall ob- tained by pushover analysis under different lateral load patterns are compared with those from nonlinear time history analy- sis.Based on the numerical results obtained a two-phase load pattern:an inverted triangle(first mode)load pattern until the base shear force reaches β times its maximum value,V_(max)followed by a(x/H)~α form,here β and α being some coeffi- cients depending on the type of the structures considered,is proposed in the paper,which can provide excellent approxima- tion of the seismic capacity curve for low-to-mid-rise shear type buildings.Furthermore,it is shown both the two-phase load pattern proposed and the invariant uniform pattern can be used for low-to-mid-rise shear-bending type and low-rise bending type of buildings.No suitable load patterns have been found for high-rise buildings.展开更多
This paper investigates the behavior and the failure mechanism of a double deck bridge constructed in China through nonlinear time history analysis. A parametric study was conducted to evaluate the influence of differ...This paper investigates the behavior and the failure mechanism of a double deck bridge constructed in China through nonlinear time history analysis. A parametric study was conducted to evaluate the influence of different structural characteristics on the behavior of the double deck bridge under transverse seismic motions, and to detect the effect of bi- directional loading on the seismic response of this type of bridge. The results showed that some characteristics, such as the variable lateral stiffness, the foundation modelling, and the longitudinal reinforcement ratio of the upper and lower columns of the bridge pier bents have a major impact on the double deck bridge response and its failure mechanism under transverse seismic motions. It was found that the soft story failure mechanism :is not unique to the double deck bridge and its occurrence is related to some conditions and structural characteristics of the bridge structure. The analysis also showed that the seismic vulnerability of the double deck bridge under bi-directional loading: was severely increased compared to the bridge response under unidirectional transverse loading, and out-of-phase movements were triggered between adjacent girders.展开更多
As there is a lack of earthquake damage data for factory buildings with seismic fortifications in China,seismic vulnerability analysis was performed by numerical simulation in this paper.The earthquake-structure analy...As there is a lack of earthquake damage data for factory buildings with seismic fortifications in China,seismic vulnerability analysis was performed by numerical simulation in this paper.The earthquake-structure analysis model was developed with considering the influence of uncertainties of the ground motion and structural model parameters.The small-size sampling was conducted based on the Latin hypercube sampling and orthogonal design methods.Using nonlinear analysis,the seismic vulnerability curves and damage probability matrix with various seismic fortification intensities(SFI)were obtained.The seismic capacity of the factory building was then evaluated.The results showed that,with different designs at different SFIs,the factory building could consistently achieve the three seismic fortification objectives.For the studied factory buildings with the SFI of 6,they satisfied the seismic fortification requirements of“no damage in moderate earthquakes,mendable in strong earthquakes”;for those buildings with SFIs of 7 and 8,the requirement of“no collapsing in super strong earthquakes”was generally met;while for those with SFIs of 9,the requirement of“mendable in moderate earthquakes”was almost satisfied.The results showed factory buildings designed with low SFIs are better at achieving the seismic fortification objectives than those designed with high SFIs.展开更多
This study describes the seismic performance of an existing five storey reinforced concrete building which represents the typical properties of low-rise non-ductile buildings in Turkey. The effectiveness of shear wall...This study describes the seismic performance of an existing five storey reinforced concrete building which represents the typical properties of low-rise non-ductile buildings in Turkey. The effectiveness of shear walls and the steel bracings in retrofitting the building was examined through nonlinear static and dynamic analyses. By using the nonlinear static analysis, retrofitted buildings seismic performances under lateral seismic load were compared with each other. Moreover, the performance points and response levels of the existing and retrofitting cases were determined by way of the capacity-spectrum method described in ATC-40 (1996). For the nonlinear dynamic analysis the records were selected to represent wide ranges of duration and frequency content. Considering the change in the stiffness and the energy dissipation capacities, the performance of the existing and retrofitted buildings were evaluated in terms of story drifts and damage states. It was found that each earthquake record exhibited its own peculiarities, dictated by frequency content, duration, sequence of peaks and their amplitude. The seismic performance of retrofitted buildings resulted in lower displacements and higher energy dissipation capacity depending mainly on the properties of the ground motions and the retrofitting strategies. Moreover, severe structural damage (irreparable or collapse) was observed for the existing building. However, buildings with retrofit alternatives exhibited lower damage levels changing from no damage to irreparable damage states.展开更多
The practical design of the cable-stayed bridge of the 3rd Macao-Taipa bridge is investigated by the finite element analysis program ANSYS, and 3-D elements BEAM188 and BEAM4 are adopted to create a dynamic calculati...The practical design of the cable-stayed bridge of the 3rd Macao-Taipa bridge is investigated by the finite element analysis program ANSYS, and 3-D elements BEAM188 and BEAM4 are adopted to create a dynamic calculation model. In order to analyze the material nonlinear seismic response of the cable-stayed bridge, the nonlinear behaviors of the ductile plastic hinges of the bridge towers are taken into account by employing the nonlinear rotational spring element COMBIN40. To simulate a major earthquake, three earthquake records were chosen using a wave-choosing program and input into the bridge structure along longitudinal and transversal directions. Comparisons of the linear and nonlinear seismic responses of the cable-stayed bridge are performed. In addition, a study of TMD primary control is carried out using element MASS21 and element COMBIN14, and it is indicated that the effects of mitigation monitoring are evident.展开更多
Load pattern selection is one of the critical issues in pushover analysis (POA) when the influence of higher modes is evident. In terms of interstory drift, comparisons between the nonlinear time history analysis (NL-...Load pattern selection is one of the critical issues in pushover analysis (POA) when the influence of higher modes is evident. In terms of interstory drift, comparisons between the nonlinear time history analysis (NL-THA) and the pushover analysis (POA) were conducted for three typical RC frame buildings under a variety of ground motion levels. Eight typical earthquake inputs, including four earthquake records and four artificial earthquake waves, were employed as the input of NL-THA; five typical lateral load patterns were considered in POA. By means of modal participation factor, the higher mode effect in POA was quantified considering floor numbers and the ground motion intensity. Suggestions about load pattern selection in POA were provided when higher mode influence was found evident.展开更多
In the present study, finite element dynamic analysis or time history analysis of two-span beams subjected to asynchronous multi-support motions is carried out by using the moving support finite element. The elemental...In the present study, finite element dynamic analysis or time history analysis of two-span beams subjected to asynchronous multi-support motions is carried out by using the moving support finite element. The elemental equation of the element is based on total displacements and is derived under the concept of the quasi-static displacement decomposition. The use of moving support element shows that the element is very simple and convenient to represent continuous beam moving, deforming and vibrating simultaneously due to support motions. The comparison between the numerical results and analytical solutions indicates that the FE result agrees with the analytical solution.展开更多
In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accurac...In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accuracy of the N2 method in certain conditions has been pointed out by several studies. This paper addresses the assessment of effectiveness of the N2 method in seismic displacement demand determination in non-linear domain. The objective of this work is to investigate the accuracy of the N2 method through comparison with displacement demands computed using non-linear timehistory analysis(NLTHA). Results show that the original N2 method may lead to overestimation or underestimation of displacement demand predictions. This may affect results of mechanical model-based assessment of seismic vulnerability at an urban scale. Hence, the second part of this paper addresses an improvement of the N2 method formula by empirical evaluation of NLTHA results based on EC8 ground-classes. This task is formulated as a mathematical programming problem in which coefficients are obtained by minimizing the overall discrepancy between NLTHA and modified formula results. Various settings of the mathematical programming problem have been solved using a global optimization metaheuristic. An extensive comparison between the original N2 method formulation and optimized formulae highlights benefits of the strategy.展开更多
文摘The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.
文摘This paper presents an investigation of the seismic behavior of reinforced concrete(RC)structures in which shear walls are the main lateral load-resisting elements and the participation of flat slab floor systems is not considered in the seismic design procedure.In this regard,the behavior of six prototype structures(with different heights and plan layouts)is investigated through nonlinear static and time history analyses,implemented in the OpenSees platform.The results of the analyses are presented in terms of the behavior of the slab-column connections and their mode of failure at different loading stages.Moreover,the global response of the buildings is discussed in terms of some parameters,such as lateral overstrength due to the gravity flat slab-column frames.According to the nonlinear static analyses,in structures in which the slab-column connections were designed only for gravity loads,the slab-column connections exhibited a punching mode of failure even in the early stages of loading.However,the punching failure was eliminated in structures in which a minimum transverse reinforcement recommended in ACI 318(2019)was provided in the slabs at joint regions.Furthermore,despite neglecting the contribution of gravity flat slab-column frames in the lateral load resistance of the structures,a relatively significant overstrength was imposed on the structures by the gravity frames.
基金supported by the National Basic Research Program of China (973 Program,Grant No.2007CB714104)the National Natural Science Foundation of China (Grant No. 50779011)the Innovative Project for Graduate Students of Jiangsu Province (Grant No. CX09B_155Z)
文摘Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduction method was used to study the deep anti-sliding stability of a high gravity dam with a complex dam foundation in response to strong earthquake-induced ground action. Based on static anti-sliding stability analysis of the dam foundation undertaken by decreasing the shear strength parameters of the rock mass in equal proportion, the seismic time history analysis was carried out. The proposed instability criterion for the dynamic strength reduction method was that the peak values of dynamic displacements and plastic strain energy change suddenly with the increase of the strength reduction factor. The elasto-plastic behavior of the dam foundation was idealized using the Drucker-Prager yield criterion based on the associated flow rule assumption. The result of elasto-plastic time history analysis of an overflow dam monolith based on the dynamic strength reduction method was compared with that of the dynamic linear elastic analysis, and the reliability of elasto-plastic time history analysis was confirmed. The results also show that the safety factors of the dam-foundation system in the static and dynamic cases are 3.25 and 3.0, respectively, and that the F2 fault has a significant influence on the anti-sliding stability of the high gravity dam. It is also concluded that the proposed instability criterion for the dynamic strength reduction method is feasible.
基金National Natural Science Foundation of China Under Granted No.50538020Youth Science Foundation of Harbin City Under Grand No.2005AFXXJ015Youth Science Foundation of Heilongjiang Institute of Science and Technology
文摘This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.
文摘This article is devoted to a time series prediction scheme involving the nonlinear autoregressive algorithm and its applications. The scheme is implemented by means of an artificial neural network containing a hidden layer. As a training algorithm we use scaled conjugate gradient (SCG) method and the Bayesian regularization (BReg) method. The first method is applied to time series without noise, while the second one can also be applied for noisy datasets. We apply the suggested scheme for prediction of time series arising in oil and gas pricing using 50 and 100 past values. Results of numerical simulations are presented and discussed.
文摘The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical results show that the approaches are easy to implement and accurate when applied to the nonlinear space-time fractional derivatives Klein- Gordon equation. This method introduces a promising tool for solving many space-time fractional partial differential equations. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.
文摘The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its foundation. The direct analysis method was based on a rigid limit equilibrium method which regarded both dam and the rock foundation as undeformable rigid bodies. In this method, the safety factor of potential sliding surfaces was computed directly. The second method, the indirect analysis method, was based on elasto-plastic theory and employs nonlinear finite element method (FEM) in the analysis of stresses and deformation in the dam and its foundation. The determination of the safety degree of the structure was based on the convergence and abrupt the change criterion. The results obtained showed that structures' constituent material behavior played an active role in the failure of engineered structures in addition to the imposed load.
基金The Key Project of the National Natural Science Foundation of China Under Grant No.50538020 the National Science Fund for Distinguished Young Scholars Under Grant No.50725828+2 种基金 the National Natural Science Foundation of China Under Grant No.50978056the National Natural Science Foundation of China for Young Scholars Under Grant No.50908046 the Ph.D.Programs Foundation of Ministry of Education of China (No.200802861012)
文摘The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measured data,a 3D fluctuating wind field considering the tower wind effect is simulated. A novel FE model for buffeting analysis is then presented,in which a specific user-defined Matrix27 element in ANSYS is employed to simulate the aeroelastic forces and its stiffness or damping matrices are parameterized by wind velocity and vibration frequency. A nonlinear time history analysis is carried out to study the influence of the rigid central buckle on the wind-induced buffeting response of a long-span suspension bridge. The results can be used as a reference for wind resistance design of long-span suspension bridges with a rigid central buckle in the future.
文摘The seismic capacity curves of three types of buildings including frame,frame-shear wall and shear wall ob- tained by pushover analysis under different lateral load patterns are compared with those from nonlinear time history analy- sis.Based on the numerical results obtained a two-phase load pattern:an inverted triangle(first mode)load pattern until the base shear force reaches β times its maximum value,V_(max)followed by a(x/H)~α form,here β and α being some coeffi- cients depending on the type of the structures considered,is proposed in the paper,which can provide excellent approxima- tion of the seismic capacity curve for low-to-mid-rise shear type buildings.Furthermore,it is shown both the two-phase load pattern proposed and the invariant uniform pattern can be used for low-to-mid-rise shear-bending type and low-rise bending type of buildings.No suitable load patterns have been found for high-rise buildings.
文摘This paper investigates the behavior and the failure mechanism of a double deck bridge constructed in China through nonlinear time history analysis. A parametric study was conducted to evaluate the influence of different structural characteristics on the behavior of the double deck bridge under transverse seismic motions, and to detect the effect of bi- directional loading on the seismic response of this type of bridge. The results showed that some characteristics, such as the variable lateral stiffness, the foundation modelling, and the longitudinal reinforcement ratio of the upper and lower columns of the bridge pier bents have a major impact on the double deck bridge response and its failure mechanism under transverse seismic motions. It was found that the soft story failure mechanism :is not unique to the double deck bridge and its occurrence is related to some conditions and structural characteristics of the bridge structure. The analysis also showed that the seismic vulnerability of the double deck bridge under bi-directional loading: was severely increased compared to the bridge response under unidirectional transverse loading, and out-of-phase movements were triggered between adjacent girders.
文摘As there is a lack of earthquake damage data for factory buildings with seismic fortifications in China,seismic vulnerability analysis was performed by numerical simulation in this paper.The earthquake-structure analysis model was developed with considering the influence of uncertainties of the ground motion and structural model parameters.The small-size sampling was conducted based on the Latin hypercube sampling and orthogonal design methods.Using nonlinear analysis,the seismic vulnerability curves and damage probability matrix with various seismic fortification intensities(SFI)were obtained.The seismic capacity of the factory building was then evaluated.The results showed that,with different designs at different SFIs,the factory building could consistently achieve the three seismic fortification objectives.For the studied factory buildings with the SFI of 6,they satisfied the seismic fortification requirements of“no damage in moderate earthquakes,mendable in strong earthquakes”;for those buildings with SFIs of 7 and 8,the requirement of“no collapsing in super strong earthquakes”was generally met;while for those with SFIs of 9,the requirement of“mendable in moderate earthquakes”was almost satisfied.The results showed factory buildings designed with low SFIs are better at achieving the seismic fortification objectives than those designed with high SFIs.
文摘This study describes the seismic performance of an existing five storey reinforced concrete building which represents the typical properties of low-rise non-ductile buildings in Turkey. The effectiveness of shear walls and the steel bracings in retrofitting the building was examined through nonlinear static and dynamic analyses. By using the nonlinear static analysis, retrofitted buildings seismic performances under lateral seismic load were compared with each other. Moreover, the performance points and response levels of the existing and retrofitting cases were determined by way of the capacity-spectrum method described in ATC-40 (1996). For the nonlinear dynamic analysis the records were selected to represent wide ranges of duration and frequency content. Considering the change in the stiffness and the energy dissipation capacities, the performance of the existing and retrofitted buildings were evaluated in terms of story drifts and damage states. It was found that each earthquake record exhibited its own peculiarities, dictated by frequency content, duration, sequence of peaks and their amplitude. The seismic performance of retrofitted buildings resulted in lower displacements and higher energy dissipation capacity depending mainly on the properties of the ground motions and the retrofitting strategies. Moreover, severe structural damage (irreparable or collapse) was observed for the existing building. However, buildings with retrofit alternatives exhibited lower damage levels changing from no damage to irreparable damage states.
文摘The practical design of the cable-stayed bridge of the 3rd Macao-Taipa bridge is investigated by the finite element analysis program ANSYS, and 3-D elements BEAM188 and BEAM4 are adopted to create a dynamic calculation model. In order to analyze the material nonlinear seismic response of the cable-stayed bridge, the nonlinear behaviors of the ductile plastic hinges of the bridge towers are taken into account by employing the nonlinear rotational spring element COMBIN40. To simulate a major earthquake, three earthquake records were chosen using a wave-choosing program and input into the bridge structure along longitudinal and transversal directions. Comparisons of the linear and nonlinear seismic responses of the cable-stayed bridge are performed. In addition, a study of TMD primary control is carried out using element MASS21 and element COMBIN14, and it is indicated that the effects of mitigation monitoring are evident.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50278029)the National Basic Research Program of China(Grant No.2007CB714202)
文摘Load pattern selection is one of the critical issues in pushover analysis (POA) when the influence of higher modes is evident. In terms of interstory drift, comparisons between the nonlinear time history analysis (NL-THA) and the pushover analysis (POA) were conducted for three typical RC frame buildings under a variety of ground motion levels. Eight typical earthquake inputs, including four earthquake records and four artificial earthquake waves, were employed as the input of NL-THA; five typical lateral load patterns were considered in POA. By means of modal participation factor, the higher mode effect in POA was quantified considering floor numbers and the ground motion intensity. Suggestions about load pattern selection in POA were provided when higher mode influence was found evident.
文摘In the present study, finite element dynamic analysis or time history analysis of two-span beams subjected to asynchronous multi-support motions is carried out by using the moving support finite element. The elemental equation of the element is based on total displacements and is derived under the concept of the quasi-static displacement decomposition. The use of moving support element shows that the element is very simple and convenient to represent continuous beam moving, deforming and vibrating simultaneously due to support motions. The comparison between the numerical results and analytical solutions indicates that the FE result agrees with the analytical solution.
文摘In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accuracy of the N2 method in certain conditions has been pointed out by several studies. This paper addresses the assessment of effectiveness of the N2 method in seismic displacement demand determination in non-linear domain. The objective of this work is to investigate the accuracy of the N2 method through comparison with displacement demands computed using non-linear timehistory analysis(NLTHA). Results show that the original N2 method may lead to overestimation or underestimation of displacement demand predictions. This may affect results of mechanical model-based assessment of seismic vulnerability at an urban scale. Hence, the second part of this paper addresses an improvement of the N2 method formula by empirical evaluation of NLTHA results based on EC8 ground-classes. This task is formulated as a mathematical programming problem in which coefficients are obtained by minimizing the overall discrepancy between NLTHA and modified formula results. Various settings of the mathematical programming problem have been solved using a global optimization metaheuristic. An extensive comparison between the original N2 method formulation and optimized formulae highlights benefits of the strategy.