In this paper, the second order nonlinear elliptic differential equations (E) (n)Sigma (i,j=1) partial derivative/partial derivativex(j)[a(i,j)(x,y) partial derivative/partial derivativex(j)y] + q(x)f(y) = e(x) are co...In this paper, the second order nonlinear elliptic differential equations (E) (n)Sigma (i,j=1) partial derivative/partial derivativex(j)[a(i,j)(x,y) partial derivative/partial derivativex(j)y] + q(x)f(y) = e(x) are considered in an exterior Omega subset of R-n, where q(x) is allowed to change sign. Some sufficient conditions for any solutions y(x) of (E) to be satisfied liminf\\x\--> infinity \y(x)\ = 0 are obtained. Particularly, these results improve the previous results for second order ordinary differential equations.展开更多
In this paper, we present some new asymptotic results for a second order elliptic differential equations by using integral averaging and completing square technique.
基金Project supported by the Natural Science Foundation of Guangdong Province
文摘In this paper, the second order nonlinear elliptic differential equations (E) (n)Sigma (i,j=1) partial derivative/partial derivativex(j)[a(i,j)(x,y) partial derivative/partial derivativex(j)y] + q(x)f(y) = e(x) are considered in an exterior Omega subset of R-n, where q(x) is allowed to change sign. Some sufficient conditions for any solutions y(x) of (E) to be satisfied liminf\\x\--> infinity \y(x)\ = 0 are obtained. Particularly, these results improve the previous results for second order ordinary differential equations.
基金Project supported by the Natural Science Foundation of Guangdong Province (020146).
文摘In this paper, we present some new asymptotic results for a second order elliptic differential equations by using integral averaging and completing square technique.