The exact solutions for stationary responses of one class of the second order and three classes of higher order nonlinear systems to parametric and/or external while noise excitations are constructed by using Fokkcr-P...The exact solutions for stationary responses of one class of the second order and three classes of higher order nonlinear systems to parametric and/or external while noise excitations are constructed by using Fokkcr-Planck-Kolmogorov et/ualion approach. The conditions for the existence and uniqueness and the behavior of the solutions are discussed. All the systems under consideration are characterized by the dependence ofnonconservative fqrces on the first integrals of the corresponding conservative systems and arc catted generalized-energy-dependent f G.E.D.) systems. It is shown taht for each of the four classes of G.E.D. nonlinear stochastic systems there is a family of non-G.E.D. systems which are equivalent to the G.E.D. system in the sense of having identical stationary solution. The way to find the equivalent stochastic systems for a given G.E.D. system is indicated and. as an example, the equivalent stochastic systems for the second order G.E. D. nonlinear stochastic system are given. It is pointed out and illustrated with example that the exact stationary solutions for many non-G.E.D. nonlinear stochastic systems may he found by searching the equivalent G.E.D. systems.展开更多
This investigation focuses on the nonlinear dynamic behaviors in the trans- verse vibration of an axiMly accelerating viscoelastic Timoshenko beam with the external harmonic excitation. The parametric excitation is ca...This investigation focuses on the nonlinear dynamic behaviors in the trans- verse vibration of an axiMly accelerating viscoelastic Timoshenko beam with the external harmonic excitation. The parametric excitation is caused by the harmonic fluctuations of the axial moving speed. An integro-partial-differential equation governing the transverse vibration of the Timoshenko beam is established. Many factors are considered, such as viscoelasticity, the finite axial support rigidity, and the longitudinally varying tension due to the axial acceleration. With the Galerkin truncation method, a set of nonlinear ordinary differential equations are derived by discretizing the governing equation. Based on the numerical solutions, the bifurcation diagrams are presented to study the effect of the external transverse excitation. Moreover, the frequencies of the two excitations are assumed to be multiple. Further, five different tools, including the time history, the Poincaré map, and the sensitivity to initial conditions, are used to identify the motion form of the nonlinear vibration. Numerical results also show the characteristics of the quasiperiodic motion of the translating Timoshenko beam under an incommensurable re- lationship between the dual-frequency excitations.展开更多
In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a ...In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a gear pair model is established in a strongly nonlinear form, and its nonlinear vibration characteristics are systematically investigated through different approaches. Several complicated phenomena such as period doubling bifurcation, anti period doubling bifurcation and chaos can be observed under the internal parametric excitation. Then, an active compensation controller is designed to suppress the vibration, including the chaos. Finally, the effectiveness of the proposed controller is verified numerically.展开更多
We report on the localized spatial soliton excitations in the multidimensional nonlinear Schrodinger equation with radially variable nonlinearity coefficient and an external potential. By using Hirota's binary differ...We report on the localized spatial soliton excitations in the multidimensional nonlinear Schrodinger equation with radially variable nonlinearity coefficient and an external potential. By using Hirota's binary differential operators, we determine a variety of external potentials and nonlinearity coefficients that can support nonlinear localized solutions of different but desired forms. For some specific external potentials and nonlinearity coefficients, we discuss features of the corresponding (2+1)-dimensional multisolitonic solutions, including ring solitons, lump solitons, and soliton clusters.展开更多
Nonlinear optical (NLO) properties of anatase TiO2 with nanostructures of nanopaxticle (NP), nanowire (NW) and annealed nanowire (NWA) are studied by open-aperture and closed-aperture Z-scan techniques with a ...Nonlinear optical (NLO) properties of anatase TiO2 with nanostructures of nanopaxticle (NP), nanowire (NW) and annealed nanowire (NWA) are studied by open-aperture and closed-aperture Z-scan techniques with a fem- tosecond pulsed laser at wavelengths of 532 nm and 780 nm simultaneously. At 532 nm, when increasing excitation intensity, NLO absorption of TiO2 NPs transforms from saturable absorption to reverse-saturable absorption. However, NWs and NWAs exhibit the opposite change. At 780nm, all samples show reverse-saturable absorption, but have different sensitivities to excitation intensity. Due to the larger surface-to-volume ratio of NPs and less defects of NWAs by annealing, nonlinear optical absorption coet^icients follow the order NPs≥ NWs≥ NWAs. The results also show that these shape and annealing effects axe dominant at low excitation intensity, but do not exhibit at the high excitation intensity. The NLO refractive index of NPs shows a positive linear relationship with the excitation intensity, whereas NW and NWAs exhibit a negative linear relationship. The results could provide some foundational guidance to applications of anatase TiO2 in optoelectronic devices or other aspects.展开更多
This paper presented a novel wide-area nonlinear excitation control strategy for multi-machine power systems. A simple and effective model transformation method was proposed for the system's mathematical model in ...This paper presented a novel wide-area nonlinear excitation control strategy for multi-machine power systems. A simple and effective model transformation method was proposed for the system's mathematical model in the COI (center of inertia) coordinate system. The system was transformed to an uncertain linear one where deviation of generator terminal voltage became one of the new state variables. Then a wide-area nonlinear robust voltage controller was designed utilizing a LMI (linear matrix inequality) based robust control theory. The proposed controller does not rely on any preselected system operating point, adapts to variations of network parameters and system operation conditions, and assures regulation accuracy of generator terminal voltages. Neither rotor angle nor any variable's differentiation needs to be measured for the proposed controller, and only terminal voltages, rotor speeds, active and reactive power outputs of generators are required. In addition, the proposed controller not only takes into account time delays of remote signals, but also eliminates the effect of wide-area information's incompleteness when not all generators are equipped with PMU (phase measurement unit). Detailed tests were conducted by PSCAD/EMTDC for a three-machine and four-machine power systems respectively, and simulation results illustrate high performance of the proposed controller.展开更多
This paper investigates a highly efficient and promising control method for forced vibration control of an axially moving beam with an attached nonlinear energy sink(NES).Because of the axial velocity,external force...This paper investigates a highly efficient and promising control method for forced vibration control of an axially moving beam with an attached nonlinear energy sink(NES).Because of the axial velocity,external force and external excitation frequency,the beam undergoes a high-amplitude vibration.The Galerkin method is applied to discretize the dynamic equations of the beam–NES system.The steady-state responses of the beams with an attached NES and with nothing attached are acquired by numerical simulation.Furthermore,the fast Fourier transform(FFT)is applied to get the amplitude–frequency responses.From the perspective of frequency domain analysis,it is explained that the NES has little effect on the natural frequency of the beam.Results confirm that NES has a great potential to control the excessive vibration.展开更多
Highly efficient nonlinear optical(NLO) materials with well-defined architectures in the wavelength and subwavelength length scales are of particular importance for next generation of integrated photonic circuits. F...Highly efficient nonlinear optical(NLO) materials with well-defined architectures in the wavelength and subwavelength length scales are of particular importance for next generation of integrated photonic circuits. Fluorenone analogues have been demonstrated to be promising candidates as building blocks for assembly of organic NLO materials thanks to their synergistic supramolecular interactions and brilliant optical properties. Here we have studied the polymorphs of a phenylethynyl functionalized fluorenone derivative, and their controlled self-assembly for microstructures with different morphologies. These polymorphic microcrystals exhibit very distinctive NLO properties, highly related to their supramolecular and electronic structures.展开更多
To improve the transient stability of multimachine power systems,observational linearization and tracking objective excitation control laws were derived from the phasor measurement unit(PMU),observational linearizatio...To improve the transient stability of multimachine power systems,observational linearization and tracking objective excitation control laws were derived from the phasor measurement unit(PMU),observational linearization,and tracking objective control theory based on synchronized coordinates and reference generator coordinates.The control strategies utilized real-time state variables obtained by PMU to linearize the state equations of the system,and then the linear optimal control strategy was used to design excitation controllers.The inaccuracy of the local linearization method and the complexity of the system models designed in the exact linearization method for nonlinear systems were avoided.Therefore,the control strategies were applied in real time.Simulation results show that the proposed method can improve the transient stability of power systems more efficiently than nonlinear optimal excitation control.展开更多
基金Project Supported by The National Natural Science Foundation of China
文摘The exact solutions for stationary responses of one class of the second order and three classes of higher order nonlinear systems to parametric and/or external while noise excitations are constructed by using Fokkcr-Planck-Kolmogorov et/ualion approach. The conditions for the existence and uniqueness and the behavior of the solutions are discussed. All the systems under consideration are characterized by the dependence ofnonconservative fqrces on the first integrals of the corresponding conservative systems and arc catted generalized-energy-dependent f G.E.D.) systems. It is shown taht for each of the four classes of G.E.D. nonlinear stochastic systems there is a family of non-G.E.D. systems which are equivalent to the G.E.D. system in the sense of having identical stationary solution. The way to find the equivalent stochastic systems for a given G.E.D. system is indicated and. as an example, the equivalent stochastic systems for the second order G.E. D. nonlinear stochastic system are given. It is pointed out and illustrated with example that the exact stationary solutions for many non-G.E.D. nonlinear stochastic systems may he found by searching the equivalent G.E.D. systems.
基金Project supported by the State Key Program of National Natural Science Foundation of China(No.11232009)the National Natural Science Foundation of China(Nos.11372171 and 11422214)
文摘This investigation focuses on the nonlinear dynamic behaviors in the trans- verse vibration of an axiMly accelerating viscoelastic Timoshenko beam with the external harmonic excitation. The parametric excitation is caused by the harmonic fluctuations of the axial moving speed. An integro-partial-differential equation governing the transverse vibration of the Timoshenko beam is established. Many factors are considered, such as viscoelasticity, the finite axial support rigidity, and the longitudinally varying tension due to the axial acceleration. With the Galerkin truncation method, a set of nonlinear ordinary differential equations are derived by discretizing the governing equation. Based on the numerical solutions, the bifurcation diagrams are presented to study the effect of the external transverse excitation. Moreover, the frequencies of the two excitations are assumed to be multiple. Further, five different tools, including the time history, the Poincaré map, and the sensitivity to initial conditions, are used to identify the motion form of the nonlinear vibration. Numerical results also show the characteristics of the quasiperiodic motion of the translating Timoshenko beam under an incommensurable re- lationship between the dual-frequency excitations.
基金Project supported by the National Natural Science Foundation of China(Grant No.61104040)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203090)the University Innovation Team of Hebei Province Leading Talent Cultivation Project,China(Grant No.LJRC013)
文摘In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a gear pair model is established in a strongly nonlinear form, and its nonlinear vibration characteristics are systematically investigated through different approaches. Several complicated phenomena such as period doubling bifurcation, anti period doubling bifurcation and chaos can be observed under the internal parametric excitation. Then, an active compensation controller is designed to suppress the vibration, including the chaos. Finally, the effectiveness of the proposed controller is verified numerically.
基金Supported by the Natural Science Foundation of Guangdong Province under Grant No. 1015283001000000,Chinasupported by the NPRP 09-462-1-074 project with the Qatar National Research Foundation
文摘We report on the localized spatial soliton excitations in the multidimensional nonlinear Schrodinger equation with radially variable nonlinearity coefficient and an external potential. By using Hirota's binary differential operators, we determine a variety of external potentials and nonlinearity coefficients that can support nonlinear localized solutions of different but desired forms. For some specific external potentials and nonlinearity coefficients, we discuss features of the corresponding (2+1)-dimensional multisolitonic solutions, including ring solitons, lump solitons, and soliton clusters.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11404410 and 11504105
文摘Nonlinear optical (NLO) properties of anatase TiO2 with nanostructures of nanopaxticle (NP), nanowire (NW) and annealed nanowire (NWA) are studied by open-aperture and closed-aperture Z-scan techniques with a fem- tosecond pulsed laser at wavelengths of 532 nm and 780 nm simultaneously. At 532 nm, when increasing excitation intensity, NLO absorption of TiO2 NPs transforms from saturable absorption to reverse-saturable absorption. However, NWs and NWAs exhibit the opposite change. At 780nm, all samples show reverse-saturable absorption, but have different sensitivities to excitation intensity. Due to the larger surface-to-volume ratio of NPs and less defects of NWAs by annealing, nonlinear optical absorption coet^icients follow the order NPs≥ NWs≥ NWAs. The results also show that these shape and annealing effects axe dominant at low excitation intensity, but do not exhibit at the high excitation intensity. The NLO refractive index of NPs shows a positive linear relationship with the excitation intensity, whereas NW and NWAs exhibit a negative linear relationship. The results could provide some foundational guidance to applications of anatase TiO2 in optoelectronic devices or other aspects.
文摘This paper presented a novel wide-area nonlinear excitation control strategy for multi-machine power systems. A simple and effective model transformation method was proposed for the system's mathematical model in the COI (center of inertia) coordinate system. The system was transformed to an uncertain linear one where deviation of generator terminal voltage became one of the new state variables. Then a wide-area nonlinear robust voltage controller was designed utilizing a LMI (linear matrix inequality) based robust control theory. The proposed controller does not rely on any preselected system operating point, adapts to variations of network parameters and system operation conditions, and assures regulation accuracy of generator terminal voltages. Neither rotor angle nor any variable's differentiation needs to be measured for the proposed controller, and only terminal voltages, rotor speeds, active and reactive power outputs of generators are required. In addition, the proposed controller not only takes into account time delays of remote signals, but also eliminates the effect of wide-area information's incompleteness when not all generators are equipped with PMU (phase measurement unit). Detailed tests were conducted by PSCAD/EMTDC for a three-machine and four-machine power systems respectively, and simulation results illustrate high performance of the proposed controller.
基金supported by the National Natural Science Foundation of China (project nos.11772205 , 11202140 , 11402151 , 11572182 , 51305421)the funding support from the Natural Science Foundation of Liaoning Province (201501708)
文摘This paper investigates a highly efficient and promising control method for forced vibration control of an axially moving beam with an attached nonlinear energy sink(NES).Because of the axial velocity,external force and external excitation frequency,the beam undergoes a high-amplitude vibration.The Galerkin method is applied to discretize the dynamic equations of the beam–NES system.The steady-state responses of the beams with an attached NES and with nothing attached are acquired by numerical simulation.Furthermore,the fast Fourier transform(FFT)is applied to get the amplitude–frequency responses.From the perspective of frequency domain analysis,it is explained that the NES has little effect on the natural frequency of the beam.Results confirm that NES has a great potential to control the excessive vibration.
基金the financial supports from the National Natural Science Foundation of China(NSFC) (Nos.21773168, 51503143 and 21761132007)the Tianjin Natural Science Foundation(No. 16JCQNJC05000)+5 种基金the Innovation Foundation of Tianjin University (No. 2016XRX-0017)the China International Science and Technology Projects(No. S2016G3413)The Netherlands Organization for Scientific Research (NWO) with the Veni Grant (No. 680-47-437)The Royal Netherlands Academy of Arts and Sciences(KNAW) with the China-Exchange Program (No. 530-4CDPO2)the Tianjin 1000 Youth Talents Planthe Chinese Scholarship Council (CSC)
文摘Highly efficient nonlinear optical(NLO) materials with well-defined architectures in the wavelength and subwavelength length scales are of particular importance for next generation of integrated photonic circuits. Fluorenone analogues have been demonstrated to be promising candidates as building blocks for assembly of organic NLO materials thanks to their synergistic supramolecular interactions and brilliant optical properties. Here we have studied the polymorphs of a phenylethynyl functionalized fluorenone derivative, and their controlled self-assembly for microstructures with different morphologies. These polymorphic microcrystals exhibit very distinctive NLO properties, highly related to their supramolecular and electronic structures.
基金supported by the National Natural Science Foundation of China(Grant No.50595410).
文摘To improve the transient stability of multimachine power systems,observational linearization and tracking objective excitation control laws were derived from the phasor measurement unit(PMU),observational linearization,and tracking objective control theory based on synchronized coordinates and reference generator coordinates.The control strategies utilized real-time state variables obtained by PMU to linearize the state equations of the system,and then the linear optimal control strategy was used to design excitation controllers.The inaccuracy of the local linearization method and the complexity of the system models designed in the exact linearization method for nonlinear systems were avoided.Therefore,the control strategies were applied in real time.Simulation results show that the proposed method can improve the transient stability of power systems more efficiently than nonlinear optimal excitation control.