This paper presents three-dimensional finite element (FE) analyses of an all-frame model of a three-story reinforced concrete (RC) building damaged in the 1999 Taiwan Chi-Chi Earthquake. Non-structural brick walls...This paper presents three-dimensional finite element (FE) analyses of an all-frame model of a three-story reinforced concrete (RC) building damaged in the 1999 Taiwan Chi-Chi Earthquake. Non-structural brick walls of the building acted as a seismic resistant element although their contributions were neglected in the design. Hence, the entire structure of a typical frame was modeled and static and dynamic nonlinear analyses were conducted to evaluate the contributions of the brick walls. However, the results of the analyses were considerably overestimated due to coarse mesh discretizations, which were unavoidable due to limited computer resources. This study corrects the overestimations by modifying (1) the tensile strengths and (2) shear stiffness reduction factors of concrete and brick. The results indicate that brick walls improve frame strength although shear failures are caused in columns shortened by spandrel walls. Then, the effectiveness of three types of seismic retrofits is evaluated. The maximum drift of the first floor is reduced by 89.3%, 94.8%, and 27.5% by Steel-confined, FuI1-RC, and Full-brick models, respectively. Finally, feasibility analyses of models with soils were conducted. The analyses indicated that the soils elongate the natural period of building models although no significant differences were observed.展开更多
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ...Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.展开更多
The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced conc...The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.展开更多
Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of bette...Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically展开更多
In this paper, on the basis of the incremental Reissner variational principle.a nonlinear finite element analysis has been accomplished and a formulation of hybrid stress element has been presented for incompressible ...In this paper, on the basis of the incremental Reissner variational principle.a nonlinear finite element analysis has been accomplished and a formulation of hybrid stress element has been presented for incompressible Mooney rubber-like materials. The corrected terms of the non-equilibrium force and the incompressibility deviation are considered in the formulation. The computed values of numerical example agree very closely with the exact solution.展开更多
A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines(OWTs) chosen from five different offshore wind farms in Europe. The simulation is using...A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines(OWTs) chosen from five different offshore wind farms in Europe. The simulation is using this model to accurately estimate the natural frequency of these slender structures, as a function of the interaction of the foundations with the subsoil. After a brief introduction to the wind power energy as a reliable alternative in comparison to fossil fuel, the paper focuses on concept of natural frequency as a primary indicator in designing the foundations of OWTs. Then the range of natural frequencies is provided for a safe design purpose. Next, an analytical expression of an OWT natural frequency is presented as a function of soil-monopile interaction through monopile head springs characterized by lateral stiffness KL, rotational stiffness KRand cross-coupling stiffness KLRof which the differences are discussed. The nonlinear pseudo three-dimensional finite element vertical slices model has been used to analyze the lateral behaviors of monopiles supporting the OWTs of different wind farm sites considered. Through the monopiles head movements(displacements and rotations), the values of KL, KRand KLRwere obtained and substituted in the analytical expression of natural frequency for comparison. The comparison results between computed and measured natural frequencies showed an excellent agreement for most cases. This confirms the convenience of the finite element model used for the accurate estimation of the monopile head stiffness.展开更多
The uniform design method was adopted and the twenty-four groups of different geometric and physical pa-rameters were chosen. The finite element model was built. Comparisons between the simulation results and the test...The uniform design method was adopted and the twenty-four groups of different geometric and physical pa-rameters were chosen. The finite element model was built. Comparisons between the simulation results and the test re-sults prove that the simulation results are correct. The distribution of the temperature field of the chimney foundationwas analyzed. The multivariate linear regression of the hightest tomperature was performed on the inner wall of thechimney foundation by the numerical calculated results. The fitting property of the highest temperature with six influ-ence factors was obtained. A simple method for the calculation of the temperature field of the chimney foundation wasprovided.展开更多
Shapai Roller Compacted Concrete(RCC) Arch Dam is the highest RCC arch dam of the 20th century in the world with a maximum height of 132m,and it is the only concrete arch dam near the epicentre of Wenchuan earthquake ...Shapai Roller Compacted Concrete(RCC) Arch Dam is the highest RCC arch dam of the 20th century in the world with a maximum height of 132m,and it is the only concrete arch dam near the epicentre of Wenchuan earthquake on May 12th,2008.The seismic damage to the dam and the resistance of the dam has drawn great attention.This paper analyzed the response and resistance of the dam to the seismic wave using numerical simulations with comparison to the monitored data.The field investigation after the earthquake and analysis of insitu data record showed that there was only little variation in the opening size at the dam and foundation interface,transverse joints and inducing joints before and after the earthquake.The overall stability of the dam abutment resistance body was quite good except a little relaxation was observed.The results of the dynamic finite element method(FEM) showed that the sizes of the openings obtained from the numerical modeling are comparable with the monitored values,and the change of the opening size is in millimeter range.This study revealed that Shapai arch dam exhibited high seismic resistance and overload capacity in the Wenchuan earthquake event.The comparison of the monitored and simulated results showed that the numerical method applied in this paper well simulated the seismic response of the dam.The method could be useful in the future application on the safety evaluation of RCC dams.展开更多
Finite element simulations are increasingly providing a versatile environment for this topic. In this study, a two-dimensional finite element analysis is conducted to predict the deformation of high embankment in Bazh...Finite element simulations are increasingly providing a versatile environment for this topic. In this study, a two-dimensional finite element analysis is conducted to predict the deformation of high embankment in Bazhun heavy-haul railway, China. A recently developed nonlinear softening-type constitutive model is utilized to model the be- havior of subgrade filling materials subjected to freeze-thaw cycles. For the convenience of practical application, the dynamic loading induced by a vehicle is treated as a quasi-static axle load. The deformation of this embankment with different moisture content under freeze-thaw cycles is compared. The results show that when subjected to the first freeze-thaw cycle, the embankment experienced significant deformation variations. Maximum deformation was usually achieved after the embankment with optimum moisture content experienced six freeze-thaw cycles, however, the em- bankment with moisre content of 8.0% and 9.5% deforms continuously even after experiencing almost ten freeze-thaw cycles. Overall, this study provides a simple nonlinear finite element approach for calculating the deformation of the embankment in changing climate conditions.展开更多
To further the study on the newly developed portal water injection sheet pile under static loads, in this paper, by adopting the nonlinear calculation module of FEM software ANSYS, a model for the interaction between ...To further the study on the newly developed portal water injection sheet pile under static loads, in this paper, by adopting the nonlinear calculation module of FEM software ANSYS, a model for the interaction between the soil and the sheet piles is set up, and the seismic response analysis for this type of space-retaining structure is performed. The effects of the embedded depth and the distance between the front pile and the back pile on the dynamic characteristics of the portal water injection sheet pile are studied.展开更多
Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mas...Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mass and rock-fill in the ANSYS software. With the three-dimensional nonlinear finite element analysis by the mid-point incremental method, what have been computed are the deformation and stress analysis ofNa Ba reservoir CFRD (Concrete Face Rock-fill Dam) in filling period. The calculation results provide practical reference for the dam during construction safety filling stress and deformation analysis and real-time monitoring.展开更多
Boundary conditions can significantly affect a slope's behavior under strong earthquakes. To evaluate the importance of boundary conditions for finite element (FE) simulations of a shake-table experiment on the slo...Boundary conditions can significantly affect a slope's behavior under strong earthquakes. To evaluate the importance of boundary conditions for finite element (FE) simulations of a shake-table experiment on the slope response, a validated three-dimensional (3D) nonlinear FE model is presented, and the numerical and experimental results are compared. For that purpose, the robust graphical user-interface "SlopeSAR", based on the open-source computational platform OpenSees, is employed, which simplifies the effort-intensive pre- and post-processing phases. The mesh resolution effect is also addressed. A parametric study is performed to evaluate the influence of boundary conditions on the FE model involving the boundary extent and three types of boundary conditions at the end faces. Generally, variations in the boundary extent produce inconsistent slope deformations. For the two end faces, fixing the y-direction displacement is not appropriate to simulate the shake-table experiment, in which the end walls are rigid and rough. In addition, the influence of the length of the 3D slope's top face and the width of the slope play an important role in the difference between two types of boundary conditions at the end faces (fixing the y-direction displacement and fixing the (y, z) direction displacement). Overall, this study highlights that the assessment of a comparison between a simulation and an experimental result should be performed with due consideration to the effect of the boundary conditions.展开更多
A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were establish...A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were established by using the finite element tool, Abaqus. Tie constraints were used to connect the binding bars and the steel plates. Surface-to-surface contact provided by the Abaqus was used to simulate the interaction between the steel plate and the core concrete. The established models could predict the lateral load-carrying capacity of SCBs with a reasonable degree of accuracy. A calculation method was developed by superposition principle to predict the lateral load-carrying capacity of SCBs for the engineering application. The concrete confined by steel plates and binding bars is under multi-axial compression; therefore, its shear strength was calculated by using the Guo-Wang concrete failure criterion. The shear strength of the steel plates of SCBs was calculated by using the von Mises yielding criterion without considering buckling. Results of the developed method are in good agreement with the testing and finite element results.展开更多
Because the applications of single-anchor leg mooring yoke systems(SYSs)are rarely studied in the offshore industry,the design of such systems features some uncertainties.This paper investigated the effect of eccentri...Because the applications of single-anchor leg mooring yoke systems(SYSs)are rarely studied in the offshore industry,the design of such systems features some uncertainties.This paper investigated the effect of eccentricity on the wear of the topside axial bearing of a SYS.The eccentricity of the topside was verified by on-site inspection,and the axial bearing wear was found to be far more serious than the original design.The contact status between the axial bearing and flange surface was studied on the basis of the actual topside load by using nonlinear finite element analysis.Wear tests of the topside bearing under uniform and eccentric loads were also performed to study the effect of eccentric loads on the wear rate.The key parameters obtained from numerical simulations and experimentation were used to calculate the wear depth via a simplified linear wear model based on the product of the pressure and sliding distance.Results showed that eccentric loads are the main factor responsible for the excessive wear of topside axial bearings.展开更多
It is well known that static seals are usually designed to be used once. In this paper, we discuss the reusability of a type of static seal called the spring energized metal C ring, which is required to be reused 4-5 ...It is well known that static seals are usually designed to be used once. In this paper, we discuss the reusability of a type of static seal called the spring energized metal C ring, which is required to be reused 4-5 times without maintenance during the lifetime of the pump. A theoretical analysis based on the nonlinear finite element method and an experimental investigation of the reusability of the C ring are carried out. The effects of the elastic modulus of the ring material, the ring wall thickness, the amount of assembly interference between the spring and the C ring, the operating temperature and the compression ratio are discussed. The parameter S, which denotes the reaction force difference percentage, is determined to measure the reusability of the C ring. The results show that the ring wall thickness plays an important role in the reusability. Although the normal force of a thick wall decreases after the ring is reused eight times, the value is still higher than the first normal force of a thin wall. In contrast, the elastic modulus of the material has the lowest impact. Here, a pre-compression ratio of 18.2% not only produces a larger first normal force but also leads to a smaller reduction in the normal force when the ring is reused. A simulated experiment is carried out to investigate the influence of the coating of the C ring on its reusability. The results show that when plastic deformation occurs on the contact surface, the contact state of the C ring coating becomes a major factor that affects the seal performance. Aging treatment at high temperatures (250℃) reduces gized metal C ring, which leads to the deterioration in the reusability the binding force of the silver coating on the spring ener of the ring.展开更多
This paper investigates the performance of T-stub connected semi-rigid joint of rectangular tubular columns and H-shaped steel beams.The finite element analysis software ABAQUS is used to analyze the nonlinear perform...This paper investigates the performance of T-stub connected semi-rigid joint of rectangular tubular columns and H-shaped steel beams.The finite element analysis software ABAQUS is used to analyze the nonlinear performance of the joint under monotonic loading.Meanwhile,the dimensions of T-stub,column and beam are considered as analytic parameters to discuss the performance of the joint.The analysis shows that the thickness and the length of T-stub webs,the height of beam section,bolt diameter,shear connector and the preloaded force affect the performance of the joint largely,and the thickness of the steel tube,the thickness and length of T-stub flange,bolt spacing have relatively little influences on the performance of the joint.The research results indicate that this joint is semi-rigid joint.展开更多
The purpose of this study was to build a flexible mechanical system with a hydrostatic skeleton.The main components of this system are two type flexible bags.One is a structural bag with constant inner pressure.The ot...The purpose of this study was to build a flexible mechanical system with a hydrostatic skeleton.The main components of this system are two type flexible bags.One is a structural bag with constant inner pressure.The other is an actuator bag with controlled inner pressure.To design the system,it was necessary to estimate both structural deformation and driving force.Numerical analysis of flexible bags,however,is difficult because of large nonlinear deformation.This study analyzed structural strength and driving force of flexible bags with the nonlinear finite element analysis (FEA) software ABAQUS.The stress concentration dependency on the bag shape is described and the driving force is calculated to include the large deformation.From the analytical results,this study derives an empirical equation of driving force.The validity of the equation was confirmed by condition-changed analyses and experimental results.展开更多
文摘This paper presents three-dimensional finite element (FE) analyses of an all-frame model of a three-story reinforced concrete (RC) building damaged in the 1999 Taiwan Chi-Chi Earthquake. Non-structural brick walls of the building acted as a seismic resistant element although their contributions were neglected in the design. Hence, the entire structure of a typical frame was modeled and static and dynamic nonlinear analyses were conducted to evaluate the contributions of the brick walls. However, the results of the analyses were considerably overestimated due to coarse mesh discretizations, which were unavoidable due to limited computer resources. This study corrects the overestimations by modifying (1) the tensile strengths and (2) shear stiffness reduction factors of concrete and brick. The results indicate that brick walls improve frame strength although shear failures are caused in columns shortened by spandrel walls. Then, the effectiveness of three types of seismic retrofits is evaluated. The maximum drift of the first floor is reduced by 89.3%, 94.8%, and 27.5% by Steel-confined, FuI1-RC, and Full-brick models, respectively. Finally, feasibility analyses of models with soils were conducted. The analyses indicated that the soils elongate the natural period of building models although no significant differences were observed.
文摘Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.
文摘The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.
基金supported by The HongKong Polytechnic University Research Grants(No.1-BB81)grants from National Natural Science Foundation of China,Nos.10872078 and 10832012
文摘Precisely quantifying the strength of the proximal femur and accurately assessing hip fracture risk would enable those at high risk to be identified so that preventive interventions could be taken.Development of better measures of femoral strength using the clinically
文摘In this paper, on the basis of the incremental Reissner variational principle.a nonlinear finite element analysis has been accomplished and a formulation of hybrid stress element has been presented for incompressible Mooney rubber-like materials. The corrected terms of the non-equilibrium force and the incompressibility deviation are considered in the formulation. The computed values of numerical example agree very closely with the exact solution.
文摘A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines(OWTs) chosen from five different offshore wind farms in Europe. The simulation is using this model to accurately estimate the natural frequency of these slender structures, as a function of the interaction of the foundations with the subsoil. After a brief introduction to the wind power energy as a reliable alternative in comparison to fossil fuel, the paper focuses on concept of natural frequency as a primary indicator in designing the foundations of OWTs. Then the range of natural frequencies is provided for a safe design purpose. Next, an analytical expression of an OWT natural frequency is presented as a function of soil-monopile interaction through monopile head springs characterized by lateral stiffness KL, rotational stiffness KRand cross-coupling stiffness KLRof which the differences are discussed. The nonlinear pseudo three-dimensional finite element vertical slices model has been used to analyze the lateral behaviors of monopiles supporting the OWTs of different wind farm sites considered. Through the monopiles head movements(displacements and rotations), the values of KL, KRand KLRwere obtained and substituted in the analytical expression of natural frequency for comparison. The comparison results between computed and measured natural frequencies showed an excellent agreement for most cases. This confirms the convenience of the finite element model used for the accurate estimation of the monopile head stiffness.
文摘The uniform design method was adopted and the twenty-four groups of different geometric and physical pa-rameters were chosen. The finite element model was built. Comparisons between the simulation results and the test re-sults prove that the simulation results are correct. The distribution of the temperature field of the chimney foundationwas analyzed. The multivariate linear regression of the hightest tomperature was performed on the inner wall of thechimney foundation by the numerical calculated results. The fitting property of the highest temperature with six influ-ence factors was obtained. A simple method for the calculation of the temperature field of the chimney foundation wasprovided.
基金supported by The National Natural Science Foundation of China(Grant No. 51079092)Specialized Research Fund for the Doctoral Program of Higher Education(Grant no.20090181120088)Science and Technology Support Plan Project of Sichuan Province (Grant No. 2008SZ0163)
文摘Shapai Roller Compacted Concrete(RCC) Arch Dam is the highest RCC arch dam of the 20th century in the world with a maximum height of 132m,and it is the only concrete arch dam near the epicentre of Wenchuan earthquake on May 12th,2008.The seismic damage to the dam and the resistance of the dam has drawn great attention.This paper analyzed the response and resistance of the dam to the seismic wave using numerical simulations with comparison to the monitored data.The field investigation after the earthquake and analysis of insitu data record showed that there was only little variation in the opening size at the dam and foundation interface,transverse joints and inducing joints before and after the earthquake.The overall stability of the dam abutment resistance body was quite good except a little relaxation was observed.The results of the dynamic finite element method(FEM) showed that the sizes of the openings obtained from the numerical modeling are comparable with the monitored values,and the change of the opening size is in millimeter range.This study revealed that Shapai arch dam exhibited high seismic resistance and overload capacity in the Wenchuan earthquake event.The comparison of the monitored and simulated results showed that the numerical method applied in this paper well simulated the seismic response of the dam.The method could be useful in the future application on the safety evaluation of RCC dams.
基金supported by the National Natural Science Foundation of China (Grant No. 41430634)the Foundation Project Program 973 of China (No. 2012CB026104)+2 种基金the Foundation Project Program of SHENHUA BAOSHEN Railway Corporation Limited (No. 201212240384)Technology Research and Development Plan Program of Heilongjiang Province, China (No. GZ13A009)State Key Laboratory for Geo Mechanics and Deep Underground Engineering, China University of Mining & Technology (Grant No. SKLGDUEK1209)
文摘Finite element simulations are increasingly providing a versatile environment for this topic. In this study, a two-dimensional finite element analysis is conducted to predict the deformation of high embankment in Bazhun heavy-haul railway, China. A recently developed nonlinear softening-type constitutive model is utilized to model the be- havior of subgrade filling materials subjected to freeze-thaw cycles. For the convenience of practical application, the dynamic loading induced by a vehicle is treated as a quasi-static axle load. The deformation of this embankment with different moisture content under freeze-thaw cycles is compared. The results show that when subjected to the first freeze-thaw cycle, the embankment experienced significant deformation variations. Maximum deformation was usually achieved after the embankment with optimum moisture content experienced six freeze-thaw cycles, however, the em- bankment with moisre content of 8.0% and 9.5% deforms continuously even after experiencing almost ten freeze-thaw cycles. Overall, this study provides a simple nonlinear finite element approach for calculating the deformation of the embankment in changing climate conditions.
文摘To further the study on the newly developed portal water injection sheet pile under static loads, in this paper, by adopting the nonlinear calculation module of FEM software ANSYS, a model for the interaction between the soil and the sheet piles is set up, and the seismic response analysis for this type of space-retaining structure is performed. The effects of the embedded depth and the distance between the front pile and the back pile on the dynamic characteristics of the portal water injection sheet pile are studied.
文摘Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mass and rock-fill in the ANSYS software. With the three-dimensional nonlinear finite element analysis by the mid-point incremental method, what have been computed are the deformation and stress analysis ofNa Ba reservoir CFRD (Concrete Face Rock-fill Dam) in filling period. The calculation results provide practical reference for the dam during construction safety filling stress and deformation analysis and real-time monitoring.
基金National Natural Science Foundation of China under Grant Nos.41430634,51578195,51378161,and 51308547the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology under Grant No.SKLGP2013K011
文摘Boundary conditions can significantly affect a slope's behavior under strong earthquakes. To evaluate the importance of boundary conditions for finite element (FE) simulations of a shake-table experiment on the slope response, a validated three-dimensional (3D) nonlinear FE model is presented, and the numerical and experimental results are compared. For that purpose, the robust graphical user-interface "SlopeSAR", based on the open-source computational platform OpenSees, is employed, which simplifies the effort-intensive pre- and post-processing phases. The mesh resolution effect is also addressed. A parametric study is performed to evaluate the influence of boundary conditions on the FE model involving the boundary extent and three types of boundary conditions at the end faces. Generally, variations in the boundary extent produce inconsistent slope deformations. For the two end faces, fixing the y-direction displacement is not appropriate to simulate the shake-table experiment, in which the end walls are rigid and rough. In addition, the influence of the length of the 3D slope's top face and the width of the slope play an important role in the difference between two types of boundary conditions at the end faces (fixing the y-direction displacement and fixing the (y, z) direction displacement). Overall, this study highlights that the assessment of a comparison between a simulation and an experimental result should be performed with due consideration to the effect of the boundary conditions.
基金Project(51178333)supported by the National Natural Science Foundation of ChinaProject(SLDRCE09-D-03)supported by the Ministry of Science and Technology of China
文摘A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were established by using the finite element tool, Abaqus. Tie constraints were used to connect the binding bars and the steel plates. Surface-to-surface contact provided by the Abaqus was used to simulate the interaction between the steel plate and the core concrete. The established models could predict the lateral load-carrying capacity of SCBs with a reasonable degree of accuracy. A calculation method was developed by superposition principle to predict the lateral load-carrying capacity of SCBs for the engineering application. The concrete confined by steel plates and binding bars is under multi-axial compression; therefore, its shear strength was calculated by using the Guo-Wang concrete failure criterion. The shear strength of the steel plates of SCBs was calculated by using the von Mises yielding criterion without considering buckling. Results of the developed method are in good agreement with the testing and finite element results.
基金supported by the Project of China Offshore Oil Engineering Company(Tianjin)CCL2014CFD。
文摘Because the applications of single-anchor leg mooring yoke systems(SYSs)are rarely studied in the offshore industry,the design of such systems features some uncertainties.This paper investigated the effect of eccentricity on the wear of the topside axial bearing of a SYS.The eccentricity of the topside was verified by on-site inspection,and the axial bearing wear was found to be far more serious than the original design.The contact status between the axial bearing and flange surface was studied on the basis of the actual topside load by using nonlinear finite element analysis.Wear tests of the topside bearing under uniform and eccentric loads were also performed to study the effect of eccentric loads on the wear rate.The key parameters obtained from numerical simulations and experimentation were used to calculate the wear depth via a simplified linear wear model based on the product of the pressure and sliding distance.Results showed that eccentric loads are the main factor responsible for the excessive wear of topside axial bearings.
基金supported by the National Key S&T Special Project(Grant No.2012ZX06901-022)
文摘It is well known that static seals are usually designed to be used once. In this paper, we discuss the reusability of a type of static seal called the spring energized metal C ring, which is required to be reused 4-5 times without maintenance during the lifetime of the pump. A theoretical analysis based on the nonlinear finite element method and an experimental investigation of the reusability of the C ring are carried out. The effects of the elastic modulus of the ring material, the ring wall thickness, the amount of assembly interference between the spring and the C ring, the operating temperature and the compression ratio are discussed. The parameter S, which denotes the reaction force difference percentage, is determined to measure the reusability of the C ring. The results show that the ring wall thickness plays an important role in the reusability. Although the normal force of a thick wall decreases after the ring is reused eight times, the value is still higher than the first normal force of a thin wall. In contrast, the elastic modulus of the material has the lowest impact. Here, a pre-compression ratio of 18.2% not only produces a larger first normal force but also leads to a smaller reduction in the normal force when the ring is reused. A simulated experiment is carried out to investigate the influence of the coating of the C ring on its reusability. The results show that when plastic deformation occurs on the contact surface, the contact state of the C ring coating becomes a major factor that affects the seal performance. Aging treatment at high temperatures (250℃) reduces gized metal C ring, which leads to the deterioration in the reusability the binding force of the silver coating on the spring ener of the ring.
基金This project was supported by Shenyang Technology Development Program(F11-166-9-00)Liaoning Key Laboratory Program(LS2010134)+1 种基金Liaoning Bai Qian Wan Talents Program(2009921095)Technology Program of Ministry of Housing and Urban-Rural Development(2011-k3-23).
文摘This paper investigates the performance of T-stub connected semi-rigid joint of rectangular tubular columns and H-shaped steel beams.The finite element analysis software ABAQUS is used to analyze the nonlinear performance of the joint under monotonic loading.Meanwhile,the dimensions of T-stub,column and beam are considered as analytic parameters to discuss the performance of the joint.The analysis shows that the thickness and the length of T-stub webs,the height of beam section,bolt diameter,shear connector and the preloaded force affect the performance of the joint largely,and the thickness of the steel tube,the thickness and length of T-stub flange,bolt spacing have relatively little influences on the performance of the joint.The research results indicate that this joint is semi-rigid joint.
文摘The purpose of this study was to build a flexible mechanical system with a hydrostatic skeleton.The main components of this system are two type flexible bags.One is a structural bag with constant inner pressure.The other is an actuator bag with controlled inner pressure.To design the system,it was necessary to estimate both structural deformation and driving force.Numerical analysis of flexible bags,however,is difficult because of large nonlinear deformation.This study analyzed structural strength and driving force of flexible bags with the nonlinear finite element analysis (FEA) software ABAQUS.The stress concentration dependency on the bag shape is described and the driving force is calculated to include the large deformation.From the analytical results,this study derives an empirical equation of driving force.The validity of the equation was confirmed by condition-changed analyses and experimental results.