This paper presents an investigation of the seismic behavior of reinforced concrete(RC)structures in which shear walls are the main lateral load-resisting elements and the participation of flat slab floor systems is n...This paper presents an investigation of the seismic behavior of reinforced concrete(RC)structures in which shear walls are the main lateral load-resisting elements and the participation of flat slab floor systems is not considered in the seismic design procedure.In this regard,the behavior of six prototype structures(with different heights and plan layouts)is investigated through nonlinear static and time history analyses,implemented in the OpenSees platform.The results of the analyses are presented in terms of the behavior of the slab-column connections and their mode of failure at different loading stages.Moreover,the global response of the buildings is discussed in terms of some parameters,such as lateral overstrength due to the gravity flat slab-column frames.According to the nonlinear static analyses,in structures in which the slab-column connections were designed only for gravity loads,the slab-column connections exhibited a punching mode of failure even in the early stages of loading.However,the punching failure was eliminated in structures in which a minimum transverse reinforcement recommended in ACI 318(2019)was provided in the slabs at joint regions.Furthermore,despite neglecting the contribution of gravity flat slab-column frames in the lateral load resistance of the structures,a relatively significant overstrength was imposed on the structures by the gravity frames.展开更多
The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving ...The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.展开更多
In contemporary society, reducing carbon dioxide emissions and achieving sustainable development are paramount goals. One effective approach is to preserve existing RC (Reinforced Concrete) buildings rather than demol...In contemporary society, reducing carbon dioxide emissions and achieving sustainable development are paramount goals. One effective approach is to preserve existing RC (Reinforced Concrete) buildings rather than demolishing them for new construction. However, a significant challenge arises from the lack of elevator designs in many of these existing RC buildings. Adding an external elevator becomes crucial to solving accessibility issues, enhancing property value, and satisfying modern residential buildings using convenient requirements. However, the structural performance of external elevator wells remains understudied. This research is designed by the actual external elevator project into existing RC buildings in Jinzhong Rd, Shanghai City. Specifically, this research examines five different external elevator wells under nonlinear pushover analysis, each varying in the height of the RC (Reinforced Concrete) footing. By analyzing plastic hinge states, performance points, capacity curves, spectrum curves, layer displacement, and drift ratio, this research aims to provide a comprehensive understanding of how these structures of the external elevator well respond to seismic events. The findings are expected to serve as a valuable reference for future external elevator projects, ensuring the external elevator designs meet the seismic requirements. By emphasizing seismic resistance in the design phase, the research aims to enhance the overall safety and longevity of external elevator systems integrated into existing RC buildings.展开更多
With a geometrical model of porous material, a 3D finite-element analysis on the rolling process of spring steel60Si2Mn in the semi-solid state is carried out using software MARC. In terms of flat and groove rolling c...With a geometrical model of porous material, a 3D finite-element analysis on the rolling process of spring steel60Si2Mn in the semi-solid state is carried out using software MARC. In terms of flat and groove rolling conditions,stress field and strain field are studied. The simulation results show that the rigid-viscoplastic model can accuratelydescribe the semi-solid metal rolling process. Semi-solid slurry has the characteristics of low flow stress and goodfluidity. During groove rolling, distribution of stress and strain on the cross-section of deformation zone is moreuniform than that during flat rolling. The results of simulation are in good agreement with the experiment data, andshow that semi-solid material fits for groove rolling.展开更多
A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D F...A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.展开更多
In a full-arch implant rehabilitation ad modum Branemark, the distribution of stress and strain in mandibular bone is influenced by the type, number and position of implants used. In particular, the biomechanical beha...In a full-arch implant rehabilitation ad modum Branemark, the distribution of stress and strain in mandibular bone is influenced by the type, number and position of implants used. In particular, the biomechanical behaviour of the bone structure after complete osseointegration depends on the load transferred to the bone by each fixture. In this study, a finite-element analysis of two models was performed. Models of an all-on-four configuration and a six-implant configuration were compared in a worst-case scenario. A new V parameter is presented to aid the quantitative and comparative analysis of the all-on-four and six-implant configurations. The influence of orthotropy was also investigated, and a geometric change in the all-on-four configuration is presented.展开更多
New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bendin...New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bending stresses of circular plates with movable and immovable edges under uniform pressures or a central point load.The shortcomings existing in the earlier analysis by the DQ method have been overcome by a new approach in applying the boundary conditions. The accuracy and the efficiency of the newly developed method for solving nonlinear problems are demonstrated.展开更多
In this paper, we propose a cross reference method for nonlinear time series analyzing in semi blind case, that is, the dynamic equations modeling the time series are known but the corresponding parameters are not. ...In this paper, we propose a cross reference method for nonlinear time series analyzing in semi blind case, that is, the dynamic equations modeling the time series are known but the corresponding parameters are not. The tasks of noise reduction and parameter estimation which were fulfilled separately before are combined iteratively. With the positive interaction between the two processing modules, the method is somewhat superior. Some prior work can be viewed as special cases of this general framework. The simulations for noise reduction and parameter estimation of contaminated chaotic time series show improved performance of our method compared with previous work.展开更多
A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total L...A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations,while the material nonlinearity is treated through elastoplastic stress-strain relationship.The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method.A computer program is developed to predict the mechanical responses of tensegrity systems under tensile,compressive and flexural loadings.Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program.The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications.On the other hand,its bending strength capacity is not sensitive to the self-stress level.展开更多
The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displa...The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity indexes values of four measurable parameters, such as supply pressure, proportional gain, initial position of servo cylinder piston and load force, are verified experimentally on test platform of hydraulic drive unit, and the experimental research shows that the sensitivity analysis results obtained through simulation are approximate to the test results. This research indicates each parameter sensitivity characteristics of hydraulic drive unit, the performance-affected main parameters and secondary parameters are got under different working conditions, which will provide the theoretical foundation for the control compensation and structure optimization of hydraulic drive unit.展开更多
Flexible marine risers are commonly used in deepwater floating systems. Bend stiffeners are designed to protect flexible risel against excessive bending at the connection with the hull. The structure is usually analyz...Flexible marine risers are commonly used in deepwater floating systems. Bend stiffeners are designed to protect flexible risel against excessive bending at the connection with the hull. The structure is usually analyzed as a cantilever beam subjected to an inclined point load. As deflections are large and the bend stiffener material exhibits nonlinear stress-strain characteristics, geometric and material nonlinearities are important considerations. A new approach has been developed to solve this nonlinear problem. Its main advantage is its simplicity; in fact the present method can be easily implemented on a spreadsheet. Finite element analysis using ABAQUS is performed to validate the method. Solid elements are used for the bend stiffener and flexible pipe. To simulate the near inextensibility of flexible risers, a simple and original idea of using truss elements is proposed. Through a set of validation studies the present method is found to be in a good agreement with the finite element analysis. Further, parametric studies are performed by using both methods to identify the key parameters and phenomena that are most critical in design. The most important finding is that the common practice of neglecting the internal steel sleeve in the bend stiffener analysis is non-conservative and therefore needs to be reassessed.展开更多
The combined influence of nonlinearity and dilation on slope stability was evaluated using the upper-bound limit analysis theorem.The mechanism of slope collapse was analyzed by dividing it into arbitrary discrete soi...The combined influence of nonlinearity and dilation on slope stability was evaluated using the upper-bound limit analysis theorem.The mechanism of slope collapse was analyzed by dividing it into arbitrary discrete soil blocks with the nonlinear Mohr–Coulomb failure criterion and nonassociated flow rule.The multipoint tangent(multi-tangent) technique was used to analyze the slope stability by linearizing the nonlinear failure criterion.A general expression for the slope safety factor was derived based on the virtual work principle and the strength reduction technique,and the global slope safety factor can be obtained by the optimization method of nonlinear sequential quadratic programming.The results show better agreement with previous research result when the nonlinear failure criterion reduces to a linear failure criterion or the non-associated flow rule reduces to an associated flow rule,which demonstrates the rationality of the presented method.Slope safety factors calculated by the multi-tangent inclined-slices technique were smaller than those obtained by the traditional single-tangent inclined-slices technique.The results show that the multi-tangent inclined-slices technique is a safe and effective method of slope stability limit analysis.The combined effect of nonlinearity and dilation on slope stability was analyzed,and the parameter analysis indicates that nonlinearity and dilation have significant influence on the result of slope stability analysis.展开更多
In the industrial process situation, principal component analysis (PCA) is ageneral method in data reconciliation. However, PCA sometime is unfeasible to nonlinear featureanalysis and limited in application to nonline...In the industrial process situation, principal component analysis (PCA) is ageneral method in data reconciliation. However, PCA sometime is unfeasible to nonlinear featureanalysis and limited in application to nonlinear industrial process. Kernel PCA (KPCA) is extensionof PCA and can be used for nonlinear feature analysis. A nonlinear data reconciliation method basedon KPCA is proposed. The basic idea of this method is that firstly original data are mapped to highdimensional feature space by nonlinear function, and PCA is implemented in the feature space. Thennonlinear feature analysis is implemented and data are reconstructed by using the kernel. The datareconciliation method based on KPCA is applied to ternary distillation column. Simulation resultsshow that this method can filter the noise in measurements of nonlinear process and reconciliateddata can represent the true information of nonlinear process.展开更多
This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element proce...This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element procedure using the isoparametric curved cable element based on the Lagrangian formulation is briefly summarized. A simple and accurate method to determine the initial equilibrium state of cable systems associated with self-weights, buoyancy and the motion of end points is presented using the load incremental method combined with penalty method. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method.展开更多
Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and it...Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory. The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes. The iterative optimization method was adopted to obtain the safety factors. Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion, and the validity of present method could be illuminated. From the numerical results, it can also be seen that nonlinear parameter rn, slope foot gradient ,β, height of slope H, slope top gradient a and soil bulk density γ have significant effects on the safety factor of the slope.展开更多
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the O...To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the Open Sees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.展开更多
An analytical technique, namely the homotopy analysis method (HAM), is used to solve problems of nonlinear oscillations with parametric excitation. Unlike perturbation methods, HAM is not dependent on any small phys...An analytical technique, namely the homotopy analysis method (HAM), is used to solve problems of nonlinear oscillations with parametric excitation. Unlike perturbation methods, HAM is not dependent on any small physical parameters at all, and thus valid for both weakly and strongly nonlinear problems. In addition, HAM is different from all other analytic techniques in providing a simple way to adjust and control convergence region of the series solution by means of an auxiliary parameter h. In the present paper, a periodic analytic approximations for nonlinear oscillations with parametric excitation are obtained by using HAM, and the results are validated by numerical simulations.展开更多
The work presented in this paper serves as numerical verification of the analytical model developed in the companion paper for nonlinear dynamic analysis of multi-base seismically isolated structures. To this end, two...The work presented in this paper serves as numerical verification of the analytical model developed in the companion paper for nonlinear dynamic analysis of multi-base seismically isolated structures. To this end, two numerical examples have been analyzed using the computational algorithm incorporated into program 3D-BASIS-ME-MB, developed on the basis of the newly-formulated analytical model. The first example concerns a seven-story model structure that was tested on the earthquake simulator at the University at Buflhlo and was also used as a verification example for program SAP2000. The second example concerns a two-tower, multi-story structure with a split-level seismic-isolation system. For purposes of verification, key results produced by 3D-BASIS-ME-MB are compared to experimental results, or results obtained from other structural/finite element programs. In both examples, the analyzed structure is excited under conditions of bearing uplift, thus yielding a case of much interest in verifying the capabilities of the developed analysis tool.展开更多
In the present paper, the isogeometric analysis(IGA) of free-form planar curved beams is formulated based on the nonlinear Timoshenko beam theory to investigate the large deformation of beams with variable curvature...In the present paper, the isogeometric analysis(IGA) of free-form planar curved beams is formulated based on the nonlinear Timoshenko beam theory to investigate the large deformation of beams with variable curvature. Based on the isoparametric concept, the shape functions of the field variables(displacement and rotation) in a finite element analysis are considered to be the same as the non-uniform rational basis spline(NURBS) basis functions defining the geometry. The validity of the presented formulation is tested in five case studies covering a wide range of engineering curved structures including from straight and constant curvature to variable curvature beams. The nonlinear deformation results obtained by the presented method are compared to well-established benchmark examples and also compared to the results of linear and nonlinear finite element analyses. As the nonlinear load-deflection behavior of Timoshenko beams is the main topic of this article, the results strongly show the applicability of the IGA method to the large deformation analysis of free-form curved beams. Finally, it is interesting to notice that, until very recently, the large deformations analysis of free-form Timoshenko curved beams has not been considered in IGA by researchers.展开更多
The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-d...The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-dimensional curve or robust control design is used to find an accurate robust solution. However, there may exist complex interaction between parameters and practical engineering system. With the increase of the number of parameters, it is getting hard to determine high-dimensional curves and robust control methods, thus it's difficult to get the robust design solutions. In this paper, a method of global sensitivity analysis based on divided variables in groups is proposed. By making relevant variables in one group and keeping each other independent among sets of variables, global sensitivity analysis is conducted in grouped variables and the importance of parameters is evaluated by calculating the contribution value of each parameter to the total variance of system response. By ranking the importance of input parameters, relatively important parameters are chosen to conduct robust design analysis of the system. By applying this method to the robust optimization design of a real complex nonlinear system-a vehicle occupant restraint system with multi-parameter, good solution is gained and the response variance of the objective function is reduced to 0.01, which indicates that the robustness of the occupant restraint system is improved in a great degree and the method is effective and valuable for the robust design of complex nonlinear system. This research proposes a new method which can be used to obtain solutions for complex nonlinear system robust design.展开更多
文摘This paper presents an investigation of the seismic behavior of reinforced concrete(RC)structures in which shear walls are the main lateral load-resisting elements and the participation of flat slab floor systems is not considered in the seismic design procedure.In this regard,the behavior of six prototype structures(with different heights and plan layouts)is investigated through nonlinear static and time history analyses,implemented in the OpenSees platform.The results of the analyses are presented in terms of the behavior of the slab-column connections and their mode of failure at different loading stages.Moreover,the global response of the buildings is discussed in terms of some parameters,such as lateral overstrength due to the gravity flat slab-column frames.According to the nonlinear static analyses,in structures in which the slab-column connections were designed only for gravity loads,the slab-column connections exhibited a punching mode of failure even in the early stages of loading.However,the punching failure was eliminated in structures in which a minimum transverse reinforcement recommended in ACI 318(2019)was provided in the slabs at joint regions.Furthermore,despite neglecting the contribution of gravity flat slab-column frames in the lateral load resistance of the structures,a relatively significant overstrength was imposed on the structures by the gravity frames.
文摘The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.
文摘In contemporary society, reducing carbon dioxide emissions and achieving sustainable development are paramount goals. One effective approach is to preserve existing RC (Reinforced Concrete) buildings rather than demolishing them for new construction. However, a significant challenge arises from the lack of elevator designs in many of these existing RC buildings. Adding an external elevator becomes crucial to solving accessibility issues, enhancing property value, and satisfying modern residential buildings using convenient requirements. However, the structural performance of external elevator wells remains understudied. This research is designed by the actual external elevator project into existing RC buildings in Jinzhong Rd, Shanghai City. Specifically, this research examines five different external elevator wells under nonlinear pushover analysis, each varying in the height of the RC (Reinforced Concrete) footing. By analyzing plastic hinge states, performance points, capacity curves, spectrum curves, layer displacement, and drift ratio, this research aims to provide a comprehensive understanding of how these structures of the external elevator well respond to seismic events. The findings are expected to serve as a valuable reference for future external elevator projects, ensuring the external elevator designs meet the seismic requirements. By emphasizing seismic resistance in the design phase, the research aims to enhance the overall safety and longevity of external elevator systems integrated into existing RC buildings.
基金This project is supported by the National Natural Science Foundation of China under grant No. 50174003 and No. 59995440.
文摘With a geometrical model of porous material, a 3D finite-element analysis on the rolling process of spring steel60Si2Mn in the semi-solid state is carried out using software MARC. In terms of flat and groove rolling conditions,stress field and strain field are studied. The simulation results show that the rigid-viscoplastic model can accuratelydescribe the semi-solid metal rolling process. Semi-solid slurry has the characteristics of low flow stress and goodfluidity. During groove rolling, distribution of stress and strain on the cross-section of deformation zone is moreuniform than that during flat rolling. The results of simulation are in good agreement with the experiment data, andshow that semi-solid material fits for groove rolling.
基金supported by the National Natural Science Foundation of China (51109029,51178081,51138001,and 51009020)the State Key Development Program for Basic Research of China (2013CB035905)
文摘A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.
文摘In a full-arch implant rehabilitation ad modum Branemark, the distribution of stress and strain in mandibular bone is influenced by the type, number and position of implants used. In particular, the biomechanical behaviour of the bone structure after complete osseointegration depends on the load transferred to the bone by each fixture. In this study, a finite-element analysis of two models was performed. Models of an all-on-four configuration and a six-implant configuration were compared in a worst-case scenario. A new V parameter is presented to aid the quantitative and comparative analysis of the all-on-four and six-implant configurations. The influence of orthotropy was also investigated, and a geometric change in the all-on-four configuration is presented.
文摘New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bending stresses of circular plates with movable and immovable edges under uniform pressures or a central point load.The shortcomings existing in the earlier analysis by the DQ method have been overcome by a new approach in applying the boundary conditions. The accuracy and the efficiency of the newly developed method for solving nonlinear problems are demonstrated.
文摘In this paper, we propose a cross reference method for nonlinear time series analyzing in semi blind case, that is, the dynamic equations modeling the time series are known but the corresponding parameters are not. The tasks of noise reduction and parameter estimation which were fulfilled separately before are combined iteratively. With the positive interaction between the two processing modules, the method is somewhat superior. Some prior work can be viewed as special cases of this general framework. The simulations for noise reduction and parameter estimation of contaminated chaotic time series show improved performance of our method compared with previous work.
基金support of the research reported here by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education, Science and Technology (NRF2010-0019373)
文摘A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations,while the material nonlinearity is treated through elastoplastic stress-strain relationship.The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method.A computer program is developed to predict the mechanical responses of tensegrity systems under tensile,compressive and flexural loadings.Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program.The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications.On the other hand,its bending strength capacity is not sensitive to the self-stress level.
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)Hebei Provincial Applied Basic Research Program(Grant No.12962147D)National Natural Science Foundation of China(Grant No.51375423)
文摘The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity indexes values of four measurable parameters, such as supply pressure, proportional gain, initial position of servo cylinder piston and load force, are verified experimentally on test platform of hydraulic drive unit, and the experimental research shows that the sensitivity analysis results obtained through simulation are approximate to the test results. This research indicates each parameter sensitivity characteristics of hydraulic drive unit, the performance-affected main parameters and secondary parameters are got under different working conditions, which will provide the theoretical foundation for the control compensation and structure optimization of hydraulic drive unit.
文摘Flexible marine risers are commonly used in deepwater floating systems. Bend stiffeners are designed to protect flexible risel against excessive bending at the connection with the hull. The structure is usually analyzed as a cantilever beam subjected to an inclined point load. As deflections are large and the bend stiffener material exhibits nonlinear stress-strain characteristics, geometric and material nonlinearities are important considerations. A new approach has been developed to solve this nonlinear problem. Its main advantage is its simplicity; in fact the present method can be easily implemented on a spreadsheet. Finite element analysis using ABAQUS is performed to validate the method. Solid elements are used for the bend stiffener and flexible pipe. To simulate the near inextensibility of flexible risers, a simple and original idea of using truss elements is proposed. Through a set of validation studies the present method is found to be in a good agreement with the finite element analysis. Further, parametric studies are performed by using both methods to identify the key parameters and phenomena that are most critical in design. The most important finding is that the common practice of neglecting the internal steel sleeve in the bend stiffener analysis is non-conservative and therefore needs to be reassessed.
基金Projects(51208522,51478477)supported by the National Natural Science Foundation of ChinaProject(2012122033)supported by the Guizhou Provincial Department of Transportation Foundation,ChinaProject(CX2015B049)supported by the Scientific Research Innovation Project of Hunan Province,China
文摘The combined influence of nonlinearity and dilation on slope stability was evaluated using the upper-bound limit analysis theorem.The mechanism of slope collapse was analyzed by dividing it into arbitrary discrete soil blocks with the nonlinear Mohr–Coulomb failure criterion and nonassociated flow rule.The multipoint tangent(multi-tangent) technique was used to analyze the slope stability by linearizing the nonlinear failure criterion.A general expression for the slope safety factor was derived based on the virtual work principle and the strength reduction technique,and the global slope safety factor can be obtained by the optimization method of nonlinear sequential quadratic programming.The results show better agreement with previous research result when the nonlinear failure criterion reduces to a linear failure criterion or the non-associated flow rule reduces to an associated flow rule,which demonstrates the rationality of the presented method.Slope safety factors calculated by the multi-tangent inclined-slices technique were smaller than those obtained by the traditional single-tangent inclined-slices technique.The results show that the multi-tangent inclined-slices technique is a safe and effective method of slope stability limit analysis.The combined effect of nonlinearity and dilation on slope stability was analyzed,and the parameter analysis indicates that nonlinearity and dilation have significant influence on the result of slope stability analysis.
基金This project is supported by Special Foundation for Major State Basic Research of China (Project 973, No.G1998030415)
文摘In the industrial process situation, principal component analysis (PCA) is ageneral method in data reconciliation. However, PCA sometime is unfeasible to nonlinear featureanalysis and limited in application to nonlinear industrial process. Kernel PCA (KPCA) is extensionof PCA and can be used for nonlinear feature analysis. A nonlinear data reconciliation method basedon KPCA is proposed. The basic idea of this method is that firstly original data are mapped to highdimensional feature space by nonlinear function, and PCA is implemented in the feature space. Thennonlinear feature analysis is implemented and data are reconstructed by using the kernel. The datareconciliation method based on KPCA is applied to ternary distillation column. Simulation resultsshow that this method can filter the noise in measurements of nonlinear process and reconciliateddata can represent the true information of nonlinear process.
文摘This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element procedure using the isoparametric curved cable element based on the Lagrangian formulation is briefly summarized. A simple and accurate method to determine the initial equilibrium state of cable systems associated with self-weights, buoyancy and the motion of end points is presented using the load incremental method combined with penalty method. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method.
基金Project(2006318802111) supported by West Traffic Construction Science and Technology of ChinaProject(2008yb004) supported by Excellent Doctorate Dissertations of Central South University, China Project(2008G032-3) supported by Key Item of Science and Technology Research of Railway Ministry of China
文摘Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory. The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes. The iterative optimization method was adopted to obtain the safety factors. Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion, and the validity of present method could be illuminated. From the numerical results, it can also be seen that nonlinear parameter rn, slope foot gradient ,β, height of slope H, slope top gradient a and soil bulk density γ have significant effects on the safety factor of the slope.
基金National Natural Science Foundation of China under Grant No.41672266
文摘To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the Open Sees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.
文摘An analytical technique, namely the homotopy analysis method (HAM), is used to solve problems of nonlinear oscillations with parametric excitation. Unlike perturbation methods, HAM is not dependent on any small physical parameters at all, and thus valid for both weakly and strongly nonlinear problems. In addition, HAM is different from all other analytic techniques in providing a simple way to adjust and control convergence region of the series solution by means of an auxiliary parameter h. In the present paper, a periodic analytic approximations for nonlinear oscillations with parametric excitation are obtained by using HAM, and the results are validated by numerical simulations.
基金Multidisciplinary Center for Earthquake Engineering Research
文摘The work presented in this paper serves as numerical verification of the analytical model developed in the companion paper for nonlinear dynamic analysis of multi-base seismically isolated structures. To this end, two numerical examples have been analyzed using the computational algorithm incorporated into program 3D-BASIS-ME-MB, developed on the basis of the newly-formulated analytical model. The first example concerns a seven-story model structure that was tested on the earthquake simulator at the University at Buflhlo and was also used as a verification example for program SAP2000. The second example concerns a two-tower, multi-story structure with a split-level seismic-isolation system. For purposes of verification, key results produced by 3D-BASIS-ME-MB are compared to experimental results, or results obtained from other structural/finite element programs. In both examples, the analyzed structure is excited under conditions of bearing uplift, thus yielding a case of much interest in verifying the capabilities of the developed analysis tool.
文摘In the present paper, the isogeometric analysis(IGA) of free-form planar curved beams is formulated based on the nonlinear Timoshenko beam theory to investigate the large deformation of beams with variable curvature. Based on the isoparametric concept, the shape functions of the field variables(displacement and rotation) in a finite element analysis are considered to be the same as the non-uniform rational basis spline(NURBS) basis functions defining the geometry. The validity of the presented formulation is tested in five case studies covering a wide range of engineering curved structures including from straight and constant curvature to variable curvature beams. The nonlinear deformation results obtained by the presented method are compared to well-established benchmark examples and also compared to the results of linear and nonlinear finite element analyses. As the nonlinear load-deflection behavior of Timoshenko beams is the main topic of this article, the results strongly show the applicability of the IGA method to the large deformation analysis of free-form curved beams. Finally, it is interesting to notice that, until very recently, the large deformations analysis of free-form Timoshenko curved beams has not been considered in IGA by researchers.
基金Supported by National Natural Science Foundation of China(Grant No.51275164)
文摘The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-dimensional curve or robust control design is used to find an accurate robust solution. However, there may exist complex interaction between parameters and practical engineering system. With the increase of the number of parameters, it is getting hard to determine high-dimensional curves and robust control methods, thus it's difficult to get the robust design solutions. In this paper, a method of global sensitivity analysis based on divided variables in groups is proposed. By making relevant variables in one group and keeping each other independent among sets of variables, global sensitivity analysis is conducted in grouped variables and the importance of parameters is evaluated by calculating the contribution value of each parameter to the total variance of system response. By ranking the importance of input parameters, relatively important parameters are chosen to conduct robust design analysis of the system. By applying this method to the robust optimization design of a real complex nonlinear system-a vehicle occupant restraint system with multi-parameter, good solution is gained and the response variance of the objective function is reduced to 0.01, which indicates that the robustness of the occupant restraint system is improved in a great degree and the method is effective and valuable for the robust design of complex nonlinear system. This research proposes a new method which can be used to obtain solutions for complex nonlinear system robust design.