For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid...The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense.展开更多
In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractio...In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractional order Sobolev space using the contraction mapping principle and the extension theorem. The sufficient conditions for the blow up of the solution to the initial value problem are given.展开更多
In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercriti...In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.展开更多
The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied w...The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.展开更多
In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from...In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties.展开更多
Abstract By making use of the generalized sine-Gordon equation expansion method, we lind cnoidal periodic wave solutions and fundamental bright and dark optical solitary wave solutions for the fourth-order dispersive ...Abstract By making use of the generalized sine-Gordon equation expansion method, we lind cnoidal periodic wave solutions and fundamental bright and dark optical solitary wave solutions for the fourth-order dispersive and the quintic nonlinear Schroedinger equation with self-steepening, and self-frequency shift. Moreover, we discuss the formation conditions of the bright and dark solitary waves.展开更多
In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide...The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions.展开更多
We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localiz...We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.展开更多
From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that ...From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that more new periodic solutions can be obtained by this new approach, and more shock wave solutions or solitary wave solutions can be got under their limit conditions.展开更多
The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wav...The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.展开更多
Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to n...Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.展开更多
A Riccati equation involving a parameter and symbolic computation are used to uniformly construct the different forms of travelling wave solutions for nonlinear evolution equations.It is shown that the sign of the pa...A Riccati equation involving a parameter and symbolic computation are used to uniformly construct the different forms of travelling wave solutions for nonlinear evolution equations.It is shown that the sign of the parameter can be applied in judging the existence of various forms of travelling wave solutions.An efficiency of this method is demonstrated on some equations,which include Burgers Huxley equation,Caudrey Dodd Gibbon Kawada equation,generalized Benjamin Bona Mahony equation and generalized Fisher equation.展开更多
Under the travelling wave transformation, some nonlinear partial differential equations such as Camassa-Holm equation, High-order KdV equation, etc., are reduced to an integrable ODE expressed by u" +p(u)(u')^2...Under the travelling wave transformation, some nonlinear partial differential equations such as Camassa-Holm equation, High-order KdV equation, etc., are reduced to an integrable ODE expressed by u" +p(u)(u')^2 + q(u) = 0 whose generai solution can be given. Furthermore, combining complete discrimination system for polynomiai, the classifications of all single travelling wave solutions to these equations are obtained. The equation u"+p(u)(u')^2+q(u) = 0 includes the equation (u')^2 = f(u) as a special case, so the proposed method can be also applied to a large number of nonlinear equations. These complete results cannot be obtained by any indirect method.展开更多
This paper aims to propose an improved numerical model for wave breaking in the nearshore region based on the fully nonlinear form of Boussinesq equations. The model uses the κ equation turbulence scheme to determine...This paper aims to propose an improved numerical model for wave breaking in the nearshore region based on the fully nonlinear form of Boussinesq equations. The model uses the κ equation turbulence scheme to determine the eddy viscosity in the Boussinesq equations. To calculate the turbulence production term in the equation, a new formula is derived based on the concept of surface roller. By use of this formula, the turbulence production in the one-equation turbulence scheme is directly related to the difference between the water particle velocity and the wave celerity. The model is verified by Hansen and Svendsen's experimental data (1979) in terms of wave height and setup and setdown. The comparison between the model and experimental results of wave height and setup and setdown shows satisfactory agreement. The modeled turbulence energy decreases as waves attenuate in the surf zone. The modeled production term peaks at the breaking point and decreases as waves propagate shoreward. It is also suggested that both convection and diffusion play their important roles in the transport of turbulence energy immediately after wave breaking. When waves approach to the shoreline, the production and dissipation of turbulence energy are almost balanced. By use of the slot technique for the simulation of the movable shoreline boundary, wave runup in the swash zone is well simulated by the present model.展开更多
The Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│)-1 and a nonlinearity │u│p-1u is studied.The total energy decay estimates of the global solutions a...The Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│)-1 and a nonlinearity │u│p-1u is studied.The total energy decay estimates of the global solutions are obtained by using multiplier techniques to establish identity ddtE(t)+F(t)=0 and skillfully selecting f(t),g(t),h(t)when the initial data have a compact support.Using the similar method,the Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│+t)-1 and a nonlinearity │u│p-1u is studied,similar solutions are obtained when the initial data have a compact support.展开更多
In this paper, a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pr...In this paper, a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the validity and the advantages of the method, (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation is employed and many new double periodic non-travelling wave solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.展开更多
The split-step pseudo-spectral method is a useful method for solving nonlinear wave equations. However, it is not widely used because of the limitation of the periodic boundary condition. In this paper, the method is ...The split-step pseudo-spectral method is a useful method for solving nonlinear wave equations. However, it is not widely used because of the limitation of the periodic boundary condition. In this paper, the method is modified at its second step by avoiding transforming the wave height function into a frequency domain function. Thus, the periodic boundary condition is not required, and the new method is easy to implement. In order to validate its performance, the proposed method was used to solve the nonlinear parabolic mild-slope equation and the spatial modified nonlinear Schrodinger (MNLS) equation, which were used to model the wave propagation under different bathymetric conditions. Good agreement between the numerical and experimental results shows that the present method is effective and efficient in solving nonlinear wave eouations.展开更多
This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows...This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows that the nonlinearities have a strong effect at the focal point. Scattering operator is introduced to describe the caustic crossing. With the aid of the L^∞ norms, it analyzes the relative errors in approximate solutions.展开更多
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
文摘The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense.
基金supported by the National Natural Science Foundation of China (No. 10671182)
文摘In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractional order Sobolev space using the contraction mapping principle and the extension theorem. The sufficient conditions for the blow up of the solution to the initial value problem are given.
文摘In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.
文摘The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.
基金supported by the National Natural Science Foundation of China under Grant No.11571181the Natural Science Foundation of Jiangsu Province of China under Grant No.BK20171454.
文摘In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties.
基金The project supported by National Natural Science Foundation of Zhejiang Province of China under Grant No. Y605312
文摘Abstract By making use of the generalized sine-Gordon equation expansion method, we lind cnoidal periodic wave solutions and fundamental bright and dark optical solitary wave solutions for the fourth-order dispersive and the quintic nonlinear Schroedinger equation with self-steepening, and self-frequency shift. Moreover, we discuss the formation conditions of the bright and dark solitary waves.
文摘In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
文摘The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions.
基金the National Natural Science Foundation of China(Grant Nos.11871232 and 12201578)Natural Science Foundation of Henan Province,China(Grant Nos.222300420377 and 212300410417)。
文摘We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.
文摘From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that more new periodic solutions can be obtained by this new approach, and more shock wave solutions or solitary wave solutions can be got under their limit conditions.
文摘The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.
文摘Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.
基金Supported by the Postdoctoral Science Foundation of ChinaChinese Basic Research Plan"MathematicsMechanization and A Platform
文摘A Riccati equation involving a parameter and symbolic computation are used to uniformly construct the different forms of travelling wave solutions for nonlinear evolution equations.It is shown that the sign of the parameter can be applied in judging the existence of various forms of travelling wave solutions.An efficiency of this method is demonstrated on some equations,which include Burgers Huxley equation,Caudrey Dodd Gibbon Kawada equation,generalized Benjamin Bona Mahony equation and generalized Fisher equation.
文摘Under the travelling wave transformation, some nonlinear partial differential equations such as Camassa-Holm equation, High-order KdV equation, etc., are reduced to an integrable ODE expressed by u" +p(u)(u')^2 + q(u) = 0 whose generai solution can be given. Furthermore, combining complete discrimination system for polynomiai, the classifications of all single travelling wave solutions to these equations are obtained. The equation u"+p(u)(u')^2+q(u) = 0 includes the equation (u')^2 = f(u) as a special case, so the proposed method can be also applied to a large number of nonlinear equations. These complete results cannot be obtained by any indirect method.
基金This study was supported by the National Natural Science Foundation of China (Grant No.50479047) and partly by the National Science Fund for Distinguished Young Scholars of China (Estuarine and Coastal Science, Grant No.40225014)
文摘This paper aims to propose an improved numerical model for wave breaking in the nearshore region based on the fully nonlinear form of Boussinesq equations. The model uses the κ equation turbulence scheme to determine the eddy viscosity in the Boussinesq equations. To calculate the turbulence production term in the equation, a new formula is derived based on the concept of surface roller. By use of this formula, the turbulence production in the one-equation turbulence scheme is directly related to the difference between the water particle velocity and the wave celerity. The model is verified by Hansen and Svendsen's experimental data (1979) in terms of wave height and setup and setdown. The comparison between the model and experimental results of wave height and setup and setdown shows satisfactory agreement. The modeled turbulence energy decreases as waves attenuate in the surf zone. The modeled production term peaks at the breaking point and decreases as waves propagate shoreward. It is also suggested that both convection and diffusion play their important roles in the transport of turbulence energy immediately after wave breaking. When waves approach to the shoreline, the production and dissipation of turbulence energy are almost balanced. By use of the slot technique for the simulation of the movable shoreline boundary, wave runup in the swash zone is well simulated by the present model.
基金The National Natural Science Foundation of China(No.10771032)
文摘The Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│)-1 and a nonlinearity │u│p-1u is studied.The total energy decay estimates of the global solutions are obtained by using multiplier techniques to establish identity ddtE(t)+F(t)=0 and skillfully selecting f(t),g(t),h(t)when the initial data have a compact support.Using the similar method,the Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│+t)-1 and a nonlinearity │u│p-1u is studied,similar solutions are obtained when the initial data have a compact support.
基金Project supported by the State Key Program for Basic Research of China (Grant No 2004CB318000)
文摘In this paper, a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the validity and the advantages of the method, (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation is employed and many new double periodic non-travelling wave solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.
基金supported by the Central Public-Interest Scientific Institution Basal Research Fund of China(Grant No.TKS100108)
文摘The split-step pseudo-spectral method is a useful method for solving nonlinear wave equations. However, it is not widely used because of the limitation of the periodic boundary condition. In this paper, the method is modified at its second step by avoiding transforming the wave height function into a frequency domain function. Thus, the periodic boundary condition is not required, and the new method is easy to implement. In order to validate its performance, the proposed method was used to solve the nonlinear parabolic mild-slope equation and the spatial modified nonlinear Schrodinger (MNLS) equation, which were used to model the wave propagation under different bathymetric conditions. Good agreement between the numerical and experimental results shows that the present method is effective and efficient in solving nonlinear wave eouations.
基金The study is supported by National Natural Science Foundation of China (10131050)the Educational Ministry of Chinathe Shanghai Science and Technology Committee foundation (03QMH1407)
文摘This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows that the nonlinearities have a strong effect at the focal point. Scattering operator is introduced to describe the caustic crossing. With the aid of the L^∞ norms, it analyzes the relative errors in approximate solutions.