For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercriti...In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.展开更多
The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid...The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense.展开更多
In this paper, we study on the initial-boundary value problem for nonlinear wave equations of higher-order Kirchhoff type with Strong Dissipation: . At first, we prove the existence and uniqueness of the local solutio...In this paper, we study on the initial-boundary value problem for nonlinear wave equations of higher-order Kirchhoff type with Strong Dissipation: . At first, we prove the existence and uniqueness of the local solution by the Banach contraction mapping principle. Then, by “Concavity” method we establish three blow-up results for certain solutions in the case 1): , in the case 2): and in the case 3): . At last, we consider that the estimation of the upper bounds of the blow-up time is given for deferent initial energy.展开更多
We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical ...We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical soliton solutions embedded in the continuous wave background for the VCHNLSE. Then the excitation in advancement and sustainment of soliton arrays, and postponed disappearance and sustainment of the bright soliton embedded in the background are discussed in an exponential system.展开更多
We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localiz...We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.展开更多
By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ...By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ocean dynamical systems. Our analytical solutions include bright and dark solitary waves, and periodical solutions, which can be used to explain atmospheric phenomena.展开更多
The 'surface roller' to simulate wave energy dissipation of wave breaking is introduced into the random wave model based on approximate parabolic mild slope equation in this paper to simulate the random wave t...The 'surface roller' to simulate wave energy dissipation of wave breaking is introduced into the random wave model based on approximate parabolic mild slope equation in this paper to simulate the random wave transportation in chiding diffraction, refraction and breaking in nearshore areas. The roller breaking random wave higher-order approximate parabolic equation model has been verified by the existing experimental data for a plane slope beach and a circular shoal, and the numerical results of random wave breaking model agree with the experimental data very well, This model can be applied to calculate random wave propagation from deep to shallow water in large areas near the shore over natural topography.展开更多
Interracial waves propagating along the interface between a three-dimensional two-fluid system with a rigid upper boundary and an uneven bottom are considered. There is a light fluid layer overlying a heavier one in t...Interracial waves propagating along the interface between a three-dimensional two-fluid system with a rigid upper boundary and an uneven bottom are considered. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. A set of higher-order Boussinesq-type equations in terms of the depth-averaged velocities accounting for stronger nonlinearity are derived. When the small parameter measuring frequency dispersion keeping up to lower-order and full nonlinearity are considered, the equations include the Choi and Camassa's results (1999). The enhanced equations in terms of the depth-averaged velocities are obtained by applying the enhancement technique introduced by Madsen et al. (1991) and Schaffer and Madsen (1995a). It is noted that the equations derived from the present study include, as special cases, those obtained by Madsen and Schaffer (1998). By comparison with the dispersion relation of the linear Stokes waves, we found that the dispersion relation is more improved than Choi and Camassa's (1999) results, and the applicable scope of water depth is deeper.展开更多
In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: . At first, we prove the existence and uniqueness o...In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: . At first, we prove the existence and uniqueness of the solution by priori estimation and the Galerkin method. Then, we obtain to the existence of the global attractor. At last, we consider that the estimation of the upper bounds of Hausdorff and fractal dimensions for the global attractors are obtained.展开更多
We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make a...We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make assumptions (H<sub>1</sub>) - (H<sub>4</sub>). Under of the proper assume, the main results are existence and uniqueness of the solution in proved by Galerkin method, and deal with the global attractors.展开更多
By symbolic computation and a direct method, this paper presents some exact analytical solutions of the one-dimensional generalized inhomogeneous higher-order nonlinear Schrodinger equation with variable coefficients,...By symbolic computation and a direct method, this paper presents some exact analytical solutions of the one-dimensional generalized inhomogeneous higher-order nonlinear Schrodinger equation with variable coefficients, which include bright solitons, dark solitons, combined solitary wave solutions, dromions, dispersion-managed solitons, etc. The abundant structure of these solutions are shown by some interesting figures with computer simulation.展开更多
In the present paper, with the aid of symbolic computation, families of new nontrivial solutions of the first-order sub-ODE F12 = AF2 + BF2+p + CF2+2p (where F1= dF/dε, p 〉 0) are obtained. To our best knowled...In the present paper, with the aid of symbolic computation, families of new nontrivial solutions of the first-order sub-ODE F12 = AF2 + BF2+p + CF2+2p (where F1= dF/dε, p 〉 0) are obtained. To our best knowledge, these nontrivial solutions have not been found in [X.Z. Li and M.L. Wang, Phys. Lett. A 361 (2007) 115] and IS. Zhang, W. Wang, and J.L. Tong, Phys. Lett. A 372 (2008) 3808] and other existent papers until now. Using these nontrivial solutions, the sub-ODE method is described to construct several kinds of exact travelling wave solutions for the generalized KdV-mKdV equation with higher-order nonlinear terms and the generalized ZK equation with higher-order nonlinear terms. By means of this method, many other physically important nonlinear partial differential equations with nonlinear terms of any order can be investigated and new nontrivial solutions can be explicitly obtained with the help of symbolic computation system Maple or Mathematics.展开更多
A bilinear Baecklund transformation is presented for the three coupled higher-order nonlinear Schroedinger equations with the inclusion of the group velocity dispersion, third-order dispersion and Kerr-law nonlinearit...A bilinear Baecklund transformation is presented for the three coupled higher-order nonlinear Schroedinger equations with the inclusion of the group velocity dispersion, third-order dispersion and Kerr-law nonlinearity, which can describe the dynamics of alpha helical proteins in living systems as well as the propagation of ultrashort pulses in wavelength-division multiplexed system. Starting from the Baecklund transformation, the analytical soliton solution is obtained from a trivial solution. Simultaneously, the N-soliton-like solution in double Wronskian form is constructed, and the corresponding proof is also given via the Wronskian technique. The results obtained from this paper might be valuable in studying the transfer of energy in biophysics and the transmission of light pulses in optical communication systems.展开更多
We present new lemmas,theorem and corollaries to construct interactions among higher-order rogue waves,n-periodic waves and n-solitons solutions(n→∞)to the(2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov(ANNV)eq...We present new lemmas,theorem and corollaries to construct interactions among higher-order rogue waves,n-periodic waves and n-solitons solutions(n→∞)to the(2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov(ANNV)equation.Several examples for theories are given by choosing definite interactions of the wave solutions for the model.In particular,we exhibit dynamical interactions between a rogue and a cross bright-dark bell wave,a rogue and a cross-bright bell wave,a rogue and a one-,two-,three-,four-periodic wave.In addition,we also present multi-types interactions between a rogue and a periodic cross-bright bell wave,a rogue and a periodic cross-bright-bark bell wave.Finally,we physically explain such interaction solutions of the model in the 3D and density plots.展开更多
A general solution including three arbitrary functions is obtained for the (2+1)-dimensional higher-orderBroer-Kaup equation by means of WTC truncation method.Introducing proper multiple valued functions and Jacobiell...A general solution including three arbitrary functions is obtained for the (2+1)-dimensional higher-orderBroer-Kaup equation by means of WTC truncation method.Introducing proper multiple valued functions and Jacobielliptic functions in the seed solution,special types of periodic folded waves are derived.In long wave limit theseperiodic folded wave patterns may degenerate into single localized folded solitary wave excitations.The interactions ofthe periodic folded waves and their degenerated single folded solitary waves are investigated graphically and are foundto be completely elastic.展开更多
In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
The initial boundary value problems for a class of high order Kirchhoff type equations with nonlinear strongly damped terms are considered. We establish the existence and uniqueness of the global solution of the probl...The initial boundary value problems for a class of high order Kirchhoff type equations with nonlinear strongly damped terms are considered. We establish the existence and uniqueness of the global solution of the problem by using prior estimates and Galerkin’s method under proper assumptions for the rigid term. Then the compact method is used to prove the existence of a compact family of global attractors in the solution semigroup generated by the problem. Finally, the Frechet differentiability of the operator semigroup and the decay of the volume element of linearization problem are proved, and the Hausdorff dimension and Fractal dimension of the family of global attractors are obtained.展开更多
Acoustic nonlinearity holds potential as a method for assessing material stress.Analogous to the acoustoelastic effect,where the velocity of elastic waves is influenced by third-order elastic constants,the propagation...Acoustic nonlinearity holds potential as a method for assessing material stress.Analogous to the acoustoelastic effect,where the velocity of elastic waves is influenced by third-order elastic constants,the propagation of nonlinear acoustic waves in pre-stressed materials would be influenced by higher-order elastic constants.Despite this,there has been a notable absence of research exploring this phenomenon.Consequently,this paper aims to establish a theoretical framework for governing the propagation of nonlinear acoustic waves in pre-stressed materials.It delves into the impact of pre-stress on higher-order material parameters,and specifically examines the propagation of one-dimensional acoustic waves within the contexts of the uniaxial stress and the biaxial stress.This paper establishes a theoretical foundation for exploring the application of nonlinear ultrasonic techniques to measure pre-stress in materials.展开更多
The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied w...The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.展开更多
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
文摘In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.
文摘The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense.
文摘In this paper, we study on the initial-boundary value problem for nonlinear wave equations of higher-order Kirchhoff type with Strong Dissipation: . At first, we prove the existence and uniqueness of the local solution by the Banach contraction mapping principle. Then, by “Concavity” method we establish three blow-up results for certain solutions in the case 1): , in the case 2): and in the case 3): . At last, we consider that the estimation of the upper bounds of the blow-up time is given for deferent initial energy.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11005092)the Program for Innovative Research Team of Young Teachers of Zhejiang Agricultural and Forestry University, China (Grant No. 2009RC01)
文摘We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical soliton solutions embedded in the continuous wave background for the VCHNLSE. Then the excitation in advancement and sustainment of soliton arrays, and postponed disappearance and sustainment of the bright soliton embedded in the background are discussed in an exponential system.
基金the National Natural Science Foundation of China(Grant Nos.11871232 and 12201578)Natural Science Foundation of Henan Province,China(Grant Nos.222300420377 and 212300410417)。
文摘We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.
基金The project supported by National Natural Science Foundations of China under Grant Nos. 90203001, 10475055, 40305009, and 10547124
文摘By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ocean dynamical systems. Our analytical solutions include bright and dark solitary waves, and periodical solutions, which can be used to explain atmospheric phenomena.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.59839330 and No.19772031)
文摘The 'surface roller' to simulate wave energy dissipation of wave breaking is introduced into the random wave model based on approximate parabolic mild slope equation in this paper to simulate the random wave transportation in chiding diffraction, refraction and breaking in nearshore areas. The roller breaking random wave higher-order approximate parabolic equation model has been verified by the existing experimental data for a plane slope beach and a circular shoal, and the numerical results of random wave breaking model agree with the experimental data very well, This model can be applied to calculate random wave propagation from deep to shallow water in large areas near the shore over natural topography.
基金Knowledge Innovation Programs of the Chinese Academy of Sciences under contract Nos KZCX2-YW-201 and KZCX1-YW-12Natural Science Fund supported by the Educational Department of Inner Mongolia under contract Nos NJzy080005,and NJ09011A Grant from Science Fund for Young Scholars of Inner Mongolia University under contract NoND0801
文摘Interracial waves propagating along the interface between a three-dimensional two-fluid system with a rigid upper boundary and an uneven bottom are considered. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. A set of higher-order Boussinesq-type equations in terms of the depth-averaged velocities accounting for stronger nonlinearity are derived. When the small parameter measuring frequency dispersion keeping up to lower-order and full nonlinearity are considered, the equations include the Choi and Camassa's results (1999). The enhanced equations in terms of the depth-averaged velocities are obtained by applying the enhancement technique introduced by Madsen et al. (1991) and Schaffer and Madsen (1995a). It is noted that the equations derived from the present study include, as special cases, those obtained by Madsen and Schaffer (1998). By comparison with the dispersion relation of the linear Stokes waves, we found that the dispersion relation is more improved than Choi and Camassa's (1999) results, and the applicable scope of water depth is deeper.
文摘In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: . At first, we prove the existence and uniqueness of the solution by priori estimation and the Galerkin method. Then, we obtain to the existence of the global attractor. At last, we consider that the estimation of the upper bounds of Hausdorff and fractal dimensions for the global attractors are obtained.
文摘We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make assumptions (H<sub>1</sub>) - (H<sub>4</sub>). Under of the proper assume, the main results are existence and uniqueness of the solution in proved by Galerkin method, and deal with the global attractors.
基金Project supported by the National Natural Science Foundation of China (Grant No.10735030)Natural Science Foundation of Zhejiang Province of China (Grant No.Y6090592)+1 种基金Natural Science Foundation of Ningbo City (Grant No.2008A610017)K.C.Wong Magna Fund in Ningbo University
文摘By symbolic computation and a direct method, this paper presents some exact analytical solutions of the one-dimensional generalized inhomogeneous higher-order nonlinear Schrodinger equation with variable coefficients, which include bright solitons, dark solitons, combined solitary wave solutions, dromions, dispersion-managed solitons, etc. The abundant structure of these solutions are shown by some interesting figures with computer simulation.
文摘In the present paper, with the aid of symbolic computation, families of new nontrivial solutions of the first-order sub-ODE F12 = AF2 + BF2+p + CF2+2p (where F1= dF/dε, p 〉 0) are obtained. To our best knowledge, these nontrivial solutions have not been found in [X.Z. Li and M.L. Wang, Phys. Lett. A 361 (2007) 115] and IS. Zhang, W. Wang, and J.L. Tong, Phys. Lett. A 372 (2008) 3808] and other existent papers until now. Using these nontrivial solutions, the sub-ODE method is described to construct several kinds of exact travelling wave solutions for the generalized KdV-mKdV equation with higher-order nonlinear terms and the generalized ZK equation with higher-order nonlinear terms. By means of this method, many other physically important nonlinear partial differential equations with nonlinear terms of any order can be investigated and new nontrivial solutions can be explicitly obtained with the help of symbolic computation system Maple or Mathematics.
基金the Key Project of the Ministry of Education under Grant No.106033the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060006024National Natural Science Foundation of China under Grant No.60372095
文摘A bilinear Baecklund transformation is presented for the three coupled higher-order nonlinear Schroedinger equations with the inclusion of the group velocity dispersion, third-order dispersion and Kerr-law nonlinearity, which can describe the dynamics of alpha helical proteins in living systems as well as the propagation of ultrashort pulses in wavelength-division multiplexed system. Starting from the Baecklund transformation, the analytical soliton solution is obtained from a trivial solution. Simultaneously, the N-soliton-like solution in double Wronskian form is constructed, and the corresponding proof is also given via the Wronskian technique. The results obtained from this paper might be valuable in studying the transfer of energy in biophysics and the transmission of light pulses in optical communication systems.
文摘We present new lemmas,theorem and corollaries to construct interactions among higher-order rogue waves,n-periodic waves and n-solitons solutions(n→∞)to the(2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov(ANNV)equation.Several examples for theories are given by choosing definite interactions of the wave solutions for the model.In particular,we exhibit dynamical interactions between a rogue and a cross bright-dark bell wave,a rogue and a cross-bright bell wave,a rogue and a one-,two-,three-,four-periodic wave.In addition,we also present multi-types interactions between a rogue and a periodic cross-bright bell wave,a rogue and a periodic cross-bright-bark bell wave.Finally,we physically explain such interaction solutions of the model in the 3D and density plots.
基金National Natural Science Foundation of China under Grant Nos 10472063 and 10772110
文摘A general solution including three arbitrary functions is obtained for the (2+1)-dimensional higher-orderBroer-Kaup equation by means of WTC truncation method.Introducing proper multiple valued functions and Jacobielliptic functions in the seed solution,special types of periodic folded waves are derived.In long wave limit theseperiodic folded wave patterns may degenerate into single localized folded solitary wave excitations.The interactions ofthe periodic folded waves and their degenerated single folded solitary waves are investigated graphically and are foundto be completely elastic.
文摘In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
文摘The initial boundary value problems for a class of high order Kirchhoff type equations with nonlinear strongly damped terms are considered. We establish the existence and uniqueness of the global solution of the problem by using prior estimates and Galerkin’s method under proper assumptions for the rigid term. Then the compact method is used to prove the existence of a compact family of global attractors in the solution semigroup generated by the problem. Finally, the Frechet differentiability of the operator semigroup and the decay of the volume element of linearization problem are proved, and the Hausdorff dimension and Fractal dimension of the family of global attractors are obtained.
基金supported by the National Natural Science Foundation of China(No.12134002)。
文摘Acoustic nonlinearity holds potential as a method for assessing material stress.Analogous to the acoustoelastic effect,where the velocity of elastic waves is influenced by third-order elastic constants,the propagation of nonlinear acoustic waves in pre-stressed materials would be influenced by higher-order elastic constants.Despite this,there has been a notable absence of research exploring this phenomenon.Consequently,this paper aims to establish a theoretical framework for governing the propagation of nonlinear acoustic waves in pre-stressed materials.It delves into the impact of pre-stress on higher-order material parameters,and specifically examines the propagation of one-dimensional acoustic waves within the contexts of the uniaxial stress and the biaxial stress.This paper establishes a theoretical foundation for exploring the application of nonlinear ultrasonic techniques to measure pre-stress in materials.
文摘The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.