This article is devoted to the regularization of nonlinear ill-posed problems with accretive operators in Banach spaces. The data involved are assumed to be known approximately. The authors concentrate their discussio...This article is devoted to the regularization of nonlinear ill-posed problems with accretive operators in Banach spaces. The data involved are assumed to be known approximately. The authors concentrate their discussion on the convergence rates of regular solutions.展开更多
Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems, which have attracted extensive attention. However, computational cost of Newton type methods is high because practical p...Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems, which have attracted extensive attention. However, computational cost of Newton type methods is high because practical problems are complicated. We propose a mixed Newton-Tikhonov method, i.e., one step Newton-Tikhonov method with several other steps of simplified Newton-Tikhonov method. Convergence and stability of this method are proved under some conditions. Numerical experiments show that the proposed method has obvious advantages over the classical Newton method in terms of computational costs.展开更多
In the paper, we extend the implicit iterative method for linear ill-posed operator equations to solve nonlinear ill-posed problems. We show that under some conditions the error sequence of solutions of the nonlinear ...In the paper, we extend the implicit iterative method for linear ill-posed operator equations to solve nonlinear ill-posed problems. We show that under some conditions the error sequence of solutions of the nonlinear implicit iterative method is monotonically decreasing and, with this monotonicity, prove convergence of the new method for both the exact and perturbed equations.展开更多
In this paper we present a regularized Newton-type method for ill-posed problems, by using the A-smooth regularization to solve the linearized ill-posed equations. For noisy data a proper a posteriori stopping rule is...In this paper we present a regularized Newton-type method for ill-posed problems, by using the A-smooth regularization to solve the linearized ill-posed equations. For noisy data a proper a posteriori stopping rule is used that yields convergence of the Newton iteration to a solution, as the noise level goes to zero, under certain smoothness conditions on the nonlinear operator. Some appropriate assumptions on the closedness and smoothness of the starting value and the solution are shown to lead to optimal convergence rates.展开更多
In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. ...In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. Using general HSlder type source condition we obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.展开更多
An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. ...An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.展开更多
We are specially interested in the case that problem (1) is ill-posed; that is, the solutions of (1) do not depend continuously on the data. Now the regularization techniques are required. The traditional method is Ti...We are specially interested in the case that problem (1) is ill-posed; that is, the solutions of (1) do not depend continuously on the data. Now the regularization techniques are required. The traditional method is Tikhonov regularization. In recent years, the concept of entropy was introduced into the study of ill-posed problems and developed the maximum entropy method. It is found that the maximum entropy method has its展开更多
This paper considers the estimation of an unknown function h that can be characterized as a solution to a nonlinear operator equation mapping between two infinite dimensional Hilbert spaces. The nonlinear operator is ...This paper considers the estimation of an unknown function h that can be characterized as a solution to a nonlinear operator equation mapping between two infinite dimensional Hilbert spaces. The nonlinear operator is unknown but can be consistently estimated, and its inverse is discontinuous, rendering the problem ill-posed. We establish the consistency for the class of estimators that are regularized using general lower semicompact penalty functions. We derive the optimal convergence rates of the estimators under the Hilbert scale norms. We apply our results to two important problems in economics and finance: (1) estimating the parameters of the pricing kernel of defaultable bonds; (2) recovering the volatility surface implied by option prices allowing for measurement error in the option prices and numerical error in the computation of the operator.展开更多
We propose a finite dimensional method to compute the solution of nonlinear ill-posed problems approximately and show that under certain conditions, the convergence can be guaranteed. Moreover, we obtain the rate of c...We propose a finite dimensional method to compute the solution of nonlinear ill-posed problems approximately and show that under certain conditions, the convergence can be guaranteed. Moreover, we obtain the rate of convergence of our method provided that the true solution satisfies suitable smoothness condition. Finally, we present two examples from the parameter estimation problems of differential equations and illustrate the applicability of our method.展开更多
文摘This article is devoted to the regularization of nonlinear ill-posed problems with accretive operators in Banach spaces. The data involved are assumed to be known approximately. The authors concentrate their discussion on the convergence rates of regular solutions.
基金supported by the Key Disciplines of Shanghai Municipality (Operations Research & Cybernetics, No. S30104)Shanghai Leading Academic Discipline Project (No. J50101)
文摘Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems, which have attracted extensive attention. However, computational cost of Newton type methods is high because practical problems are complicated. We propose a mixed Newton-Tikhonov method, i.e., one step Newton-Tikhonov method with several other steps of simplified Newton-Tikhonov method. Convergence and stability of this method are proved under some conditions. Numerical experiments show that the proposed method has obvious advantages over the classical Newton method in terms of computational costs.
基金supported by the Key Disciplines of Shanghai Municipality (Operations Research & Cybernetics, No. S30104)the Shanghai Leading Academic Discipline Project (No. J50101)
文摘In the paper, we extend the implicit iterative method for linear ill-posed operator equations to solve nonlinear ill-posed problems. We show that under some conditions the error sequence of solutions of the nonlinear implicit iterative method is monotonically decreasing and, with this monotonicity, prove convergence of the new method for both the exact and perturbed equations.
文摘In this paper we present a regularized Newton-type method for ill-posed problems, by using the A-smooth regularization to solve the linearized ill-posed equations. For noisy data a proper a posteriori stopping rule is used that yields convergence of the Newton iteration to a solution, as the noise level goes to zero, under certain smoothness conditions on the nonlinear operator. Some appropriate assumptions on the closedness and smoothness of the starting value and the solution are shown to lead to optimal convergence rates.
基金National Institute of Technology Karnataka, India, for the financial support
文摘In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. Using general HSlder type source condition we obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.
文摘An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.
基金Project supported by the National Natural Science Foundation of China.
文摘We are specially interested in the case that problem (1) is ill-posed; that is, the solutions of (1) do not depend continuously on the data. Now the regularization techniques are required. The traditional method is Tikhonov regularization. In recent years, the concept of entropy was introduced into the study of ill-posed problems and developed the maximum entropy method. It is found that the maximum entropy method has its
基金supported by US National Science Foundation (Grant No. SES-0631613)the Cowles Foundation for Research in Economics
文摘This paper considers the estimation of an unknown function h that can be characterized as a solution to a nonlinear operator equation mapping between two infinite dimensional Hilbert spaces. The nonlinear operator is unknown but can be consistently estimated, and its inverse is discontinuous, rendering the problem ill-posed. We establish the consistency for the class of estimators that are regularized using general lower semicompact penalty functions. We derive the optimal convergence rates of the estimators under the Hilbert scale norms. We apply our results to two important problems in economics and finance: (1) estimating the parameters of the pricing kernel of defaultable bonds; (2) recovering the volatility surface implied by option prices allowing for measurement error in the option prices and numerical error in the computation of the operator.
文摘We propose a finite dimensional method to compute the solution of nonlinear ill-posed problems approximately and show that under certain conditions, the convergence can be guaranteed. Moreover, we obtain the rate of convergence of our method provided that the true solution satisfies suitable smoothness condition. Finally, we present two examples from the parameter estimation problems of differential equations and illustrate the applicability of our method.