Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isola...Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isolation is hard to meet the requirements of the loading capacity and isolation band simultaneously,which limits further engineering application,especially in the low-frequency range.In recent twenty years,the nonlinear vibration isolation technology has been widely investigated to broaden the vibration isolation band by exploiting beneficial nonlinearities.One of the most widely studied objects is the"three-spring"configured quasi-zero-stiffness(QZS)vibration isolator,which can realize the negative stiffness and high-static-low-dynamic stiffness(HSLDS)characteristics.The nonlinear vibration isolation with QZS can overcome the drawbacks of the linear one to achieve a better broadband vibration isolation performance.Due to the characteristics of fast response,strong stroke,nonlinearities,easy control,and low-cost,the nonlinear vibration with electromagnetic mechanisms has attracted attention.In this review,we focus on the basic theory,design methodology,nonlinear damping mechanism,and active control of electromagnetic QZS vibration isolators.Furthermore,we provide perspectives for further studies with electromagnetic devices to realize high-efficiency vibration isolation.展开更多
According to theoretical analysis, a general characteristic of the ground vibration induced by high dam flood discharge is that the dominant frequency ranges over several narrow frequency bands, which is verified by o...According to theoretical analysis, a general characteristic of the ground vibration induced by high dam flood discharge is that the dominant frequency ranges over several narrow frequency bands, which is verified by observations from the Xiangjiaba Hydropower Station. Nonlinear base isolation is used to reduce the structure vibration under ground excitation and the advantage of the isolation application is that the low-frequency resonance problem does not need to be considered due to its excitation characteristics, which significantly facilitate the isolation design. In order to obtain the response probabilistic distribution of a nonlinear system, the state space split technique is modified. As only a few degrees of freedom are subjected to the random noise, the probabilistic distribution of the response without involving stochastic excitation is represented by the δ function. Then, the sampling property of the δ function is employed to reduce the dimension of the Fokker-Planck-Kolmogorov (FPK) equation and the low-dimensional FPK equation is solvable with existing methods. Numerical results indicate that the proposed approach is effective and accurate. Moreover, the response probabilistic distributions are more reasonable and scientific than the peak responses calculated by conventional time and frequency domain methods.展开更多
Motivated by the need for improving the isolation performance, many research studies have been performed on isolators with nonlinear characteristics. Based on the shape of their phase portrait, such devices can be con...Motivated by the need for improving the isolation performance, many research studies have been performed on isolators with nonlinear characteristics. Based on the shape of their phase portrait, such devices can be configured as either a mono-or bi-stable isolator. This paper focuses on investigating the relative performance of these two classes under the same excitations. Force transmissibility is used to measure the isolation performance, which is defined in terms of the RMS of the ratio of the transmitted force to the excitation force. When the system is subjected to harmonic excitation, it is found that the maximum reduction of the force transmissibility in the isolation range using Quasi-Zero stiffness is achieved. When the system is subjected to random excitation, it has the same effect of Quasi-Zero stiffness. Further, optimum damping can be changed with stiffness and has minimum value.展开更多
This paper elaborates a nonlinear fluidic low frequency vibration isolator designed with the characteristics of quasi-zero stiffness(QZS).The existing model of QZS vibration isolator enhances amplitude of vibration an...This paper elaborates a nonlinear fluidic low frequency vibration isolator designed with the characteristics of quasi-zero stiffness(QZS).The existing model of QZS vibration isolator enhances amplitude of vibration and attenuating vibration frequencies.This concern with displacement plays a vital role in the performance and instability of oblique spring setup reduces the isolator performance in horizontal non-nominal loads,in this accordance;this paper associates double acting hydraulic cylinder(fluidic actuators in short)in oblique and helical coil spring.An approximate expression of unique analytical relationship between the stiffness of vertical spring and bulk modulus of the fluid is derived for Quasi–Zero Stiffness Non-Linear Vibration Isolator with Fluidic Actuators(NLVIFA in short)system and the force transmissibility is formulated and damping ratio are discussed for characteristic analysis.Modal analysis carried out and compared with analytical results and an experimental prototype is developed and investigated.The performance of the NLVIFA reduces the external embarrassment more at low frequencies and the series of experimental studies showing that the soft nonlinearity causes limitation in the resonant frequency thereupon the isolation will be enhanced and NLVIFA greatly outperform some other type of nonlinear isolators.展开更多
Existing quasi-zero stiffness(QZS)isolators are reviewed.In terms of their advantages,a novel X-shape QZS isolator combined with the cam-roller-spring mechanism(CRSM)is proposed.Different from the existing X-shape iso...Existing quasi-zero stiffness(QZS)isolators are reviewed.In terms of their advantages,a novel X-shape QZS isolator combined with the cam-roller-spring mechanism(CRSM)is proposed.Different from the existing X-shape isolators,oblique springs are used to enhance the negative stiffness of the system.Meanwhile,the CRSM is used to eliminate the gravity of the loading mass,while the X-shape structure leaves its static position.The existing QZS isolators are demonstrated and classified according to their nonlinearity mechanisms and classical shapes.It is shown that the oblique spring can realize negative stiffness based on the simplest mechanism.The X-shape has a strong capacity of loading mass,while the CRSM can achieve a designed restoring force at any position.The proposed isolator combines all these advantages together.Based on the harmonic balance method(HBM)and the simulation,the displacement transmissibilities of the proposed isolator,the X-shape isolators just with oblique springs,and the X-shape isolators in the traditional form are studied.The results show that the proposed isolator has the lowest beginning isolation frequency and the smallest maximum displacement transmissibility.However,it still has some disadvantages similar to the existing QZS isolators.This means that its parameters should be designed carefully so as to avoid becoming a bistable system,in which there are two potential wells in the potential energy curve and thus the isolation performance will be worsened.展开更多
A mathematical model was developed for a complex nonlinear coupling isolator for attenuating vibration which coupled quadratic damping, viscous damping, Coulomb damping, and nonlinear spring forces. The approximate an...A mathematical model was developed for a complex nonlinear coupling isolator for attenuating vibration which coupled quadratic damping, viscous damping, Coulomb damping, and nonlinear spring forces. The approximate analytical solution for the dynamic transmissibility of the isolator was deduced by combining Fourier transforms and the harmonic balance method with deterministic excitation. The mathematical characteristics of the dynamic transmissibility were analyzed to illustrate the dynamic performance of the isolator. The analytical results show multiple solutions, especially the low-frequency attenuation characteristics below the resonance frequency. The results provide a theoretical basis for the design of nonlinear isolators.展开更多
基金the National Natural Science Foundation of China(No.52175125)。
文摘Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isolation is hard to meet the requirements of the loading capacity and isolation band simultaneously,which limits further engineering application,especially in the low-frequency range.In recent twenty years,the nonlinear vibration isolation technology has been widely investigated to broaden the vibration isolation band by exploiting beneficial nonlinearities.One of the most widely studied objects is the"three-spring"configured quasi-zero-stiffness(QZS)vibration isolator,which can realize the negative stiffness and high-static-low-dynamic stiffness(HSLDS)characteristics.The nonlinear vibration isolation with QZS can overcome the drawbacks of the linear one to achieve a better broadband vibration isolation performance.Due to the characteristics of fast response,strong stroke,nonlinearities,easy control,and low-cost,the nonlinear vibration with electromagnetic mechanisms has attracted attention.In this review,we focus on the basic theory,design methodology,nonlinear damping mechanism,and active control of electromagnetic QZS vibration isolators.Furthermore,we provide perspectives for further studies with electromagnetic devices to realize high-efficiency vibration isolation.
基金National Key R&D Program of China under Grant No.2016YFC0401705Science Fund for Creative Research Groups of the National Natural Science Foundation of China Grant No.51621092+3 种基金the National Natural Science Foundation of China Grant No.51579173,No.51379140,No.51309177 and No.51509180the Fund for Key Research Area Innovation Groups of China Ministry of Science and Technology Grant No.2014RA4031the Program of Introducing Talents of Discipline to Universities Grant No.B14012the Tianjin Innovation Team Foundation of Key Research Areas Grant No.2014TDA001
文摘According to theoretical analysis, a general characteristic of the ground vibration induced by high dam flood discharge is that the dominant frequency ranges over several narrow frequency bands, which is verified by observations from the Xiangjiaba Hydropower Station. Nonlinear base isolation is used to reduce the structure vibration under ground excitation and the advantage of the isolation application is that the low-frequency resonance problem does not need to be considered due to its excitation characteristics, which significantly facilitate the isolation design. In order to obtain the response probabilistic distribution of a nonlinear system, the state space split technique is modified. As only a few degrees of freedom are subjected to the random noise, the probabilistic distribution of the response without involving stochastic excitation is represented by the δ function. Then, the sampling property of the δ function is employed to reduce the dimension of the Fokker-Planck-Kolmogorov (FPK) equation and the low-dimensional FPK equation is solvable with existing methods. Numerical results indicate that the proposed approach is effective and accurate. Moreover, the response probabilistic distributions are more reasonable and scientific than the peak responses calculated by conventional time and frequency domain methods.
基金Foundation item: Supported by the National Natural Science Foundation of China (No. 51375103).
文摘Motivated by the need for improving the isolation performance, many research studies have been performed on isolators with nonlinear characteristics. Based on the shape of their phase portrait, such devices can be configured as either a mono-or bi-stable isolator. This paper focuses on investigating the relative performance of these two classes under the same excitations. Force transmissibility is used to measure the isolation performance, which is defined in terms of the RMS of the ratio of the transmitted force to the excitation force. When the system is subjected to harmonic excitation, it is found that the maximum reduction of the force transmissibility in the isolation range using Quasi-Zero stiffness is achieved. When the system is subjected to random excitation, it has the same effect of Quasi-Zero stiffness. Further, optimum damping can be changed with stiffness and has minimum value.
文摘This paper elaborates a nonlinear fluidic low frequency vibration isolator designed with the characteristics of quasi-zero stiffness(QZS).The existing model of QZS vibration isolator enhances amplitude of vibration and attenuating vibration frequencies.This concern with displacement plays a vital role in the performance and instability of oblique spring setup reduces the isolator performance in horizontal non-nominal loads,in this accordance;this paper associates double acting hydraulic cylinder(fluidic actuators in short)in oblique and helical coil spring.An approximate expression of unique analytical relationship between the stiffness of vertical spring and bulk modulus of the fluid is derived for Quasi–Zero Stiffness Non-Linear Vibration Isolator with Fluidic Actuators(NLVIFA in short)system and the force transmissibility is formulated and damping ratio are discussed for characteristic analysis.Modal analysis carried out and compared with analytical results and an experimental prototype is developed and investigated.The performance of the NLVIFA reduces the external embarrassment more at low frequencies and the series of experimental studies showing that the soft nonlinearity causes limitation in the resonant frequency thereupon the isolation will be enhanced and NLVIFA greatly outperform some other type of nonlinear isolators.
基金the National Natural Science Foundation of China(No.12002195)the National Science Fund for Distinguished Young Scholars of China(No.12025204)+1 种基金the Program of Shanghai Municipal Education Commission of China(No.2019-01-07-00-09-E00018)the Pujiang Project of Shanghai Science and Technology Commission of China(No.20PJ1404000)。
文摘Existing quasi-zero stiffness(QZS)isolators are reviewed.In terms of their advantages,a novel X-shape QZS isolator combined with the cam-roller-spring mechanism(CRSM)is proposed.Different from the existing X-shape isolators,oblique springs are used to enhance the negative stiffness of the system.Meanwhile,the CRSM is used to eliminate the gravity of the loading mass,while the X-shape structure leaves its static position.The existing QZS isolators are demonstrated and classified according to their nonlinearity mechanisms and classical shapes.It is shown that the oblique spring can realize negative stiffness based on the simplest mechanism.The X-shape has a strong capacity of loading mass,while the CRSM can achieve a designed restoring force at any position.The proposed isolator combines all these advantages together.Based on the harmonic balance method(HBM)and the simulation,the displacement transmissibilities of the proposed isolator,the X-shape isolators just with oblique springs,and the X-shape isolators in the traditional form are studied.The results show that the proposed isolator has the lowest beginning isolation frequency and the smallest maximum displacement transmissibility.However,it still has some disadvantages similar to the existing QZS isolators.This means that its parameters should be designed carefully so as to avoid becoming a bistable system,in which there are two potential wells in the potential energy curve and thus the isolation performance will be worsened.
基金Supported by the National Defense Science Foundation of China (No. 00J16.2.5.DZ0502), the Natural Science Foundation for Qualified Personnel of Jiangsu University (No. 04JDG027), and the Natural Science Foundation of Guangxi Zhuang Autonomous Region (Nos. 0339037 and 0141042)
文摘A mathematical model was developed for a complex nonlinear coupling isolator for attenuating vibration which coupled quadratic damping, viscous damping, Coulomb damping, and nonlinear spring forces. The approximate analytical solution for the dynamic transmissibility of the isolator was deduced by combining Fourier transforms and the harmonic balance method with deterministic excitation. The mathematical characteristics of the dynamic transmissibility were analyzed to illustrate the dynamic performance of the isolator. The analytical results show multiple solutions, especially the low-frequency attenuation characteristics below the resonance frequency. The results provide a theoretical basis for the design of nonlinear isolators.