基于支持向量机(SVM)核方法和小波框架理论,提出了一种称为小波支持向量机(Wavelet Support Vector Machines,WSVM)的新的机器学习方法,并把这种方法应用于组合预测,得到了一种基于WSVM的非线性组合预测新模型,然后给出了此模型的结构...基于支持向量机(SVM)核方法和小波框架理论,提出了一种称为小波支持向量机(Wavelet Support Vector Machines,WSVM)的新的机器学习方法,并把这种方法应用于组合预测,得到了一种基于WSVM的非线性组合预测新模型,然后给出了此模型的结构设计和实现算法.通过仿真实验,把该方法与小波神经网络等方法相比较,得到了更好的实验结果,从而验证了该方法的正确性和有效性.展开更多
局部线性嵌入算法(locally linear embedding,LLE)是一种流形降维方法,在高维稀疏数据空间中,针对LLE不适合稀疏采样和欧氏距离公式的缺陷,研究该算法的扩展,引入核函数,并将样本映射到高维特征空间,核映射改善了样本的空间分布,改进的...局部线性嵌入算法(locally linear embedding,LLE)是一种流形降维方法,在高维稀疏数据空间中,针对LLE不适合稀疏采样和欧氏距离公式的缺陷,研究该算法的扩展,引入核函数,并将样本映射到高维特征空间,核映射改善了样本的空间分布,改进的LLE方法在适当选取近邻点个数情况下,可得到良好的效果。对从高维采样数据中恢复得到低维数据集,通过本文提出的离群数据假设,并结合本文给出的离群聚类方法对所得低维数据是否是离群数据进行判别。仿真文验的结果表明了该方法能够有效地发现高维数据集中的离群点,与此同时,该算法具有参数估计简单、参数影响不大等优点,该算法为离群点检测问题的机器学习提供了一条新的途径。展开更多
文摘基于支持向量机(SVM)核方法和小波框架理论,提出了一种称为小波支持向量机(Wavelet Support Vector Machines,WSVM)的新的机器学习方法,并把这种方法应用于组合预测,得到了一种基于WSVM的非线性组合预测新模型,然后给出了此模型的结构设计和实现算法.通过仿真实验,把该方法与小波神经网络等方法相比较,得到了更好的实验结果,从而验证了该方法的正确性和有效性.
文摘局部线性嵌入算法(locally linear embedding,LLE)是一种流形降维方法,在高维稀疏数据空间中,针对LLE不适合稀疏采样和欧氏距离公式的缺陷,研究该算法的扩展,引入核函数,并将样本映射到高维特征空间,核映射改善了样本的空间分布,改进的LLE方法在适当选取近邻点个数情况下,可得到良好的效果。对从高维采样数据中恢复得到低维数据集,通过本文提出的离群数据假设,并结合本文给出的离群聚类方法对所得低维数据是否是离群数据进行判别。仿真文验的结果表明了该方法能够有效地发现高维数据集中的离群点,与此同时,该算法具有参数估计简单、参数影响不大等优点,该算法为离群点检测问题的机器学习提供了一条新的途径。