In this paper we present a nonmonotone trust region method for nonlinear least squares problems with zero-residual and prove its convergence properties. The extensive numerical results are reported which show that the...In this paper we present a nonmonotone trust region method for nonlinear least squares problems with zero-residual and prove its convergence properties. The extensive numerical results are reported which show that the nonmonotone trust region method is generally superior to the usual trust region method.展开更多
A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to th...A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to the nonlinear Galerkin mixed element method so that it is stable for any combination of discrete velocity and pressure spaces without requiring the Babu*lka-Brezzi stability condition. The existence, uniqueness and convergence (at optimal rate) of the NGPLSME solution is proved in the case of sufficient viscosity (or small data).展开更多
Data are very important to build the digital mine. Data come from many sources, have different types and temporal states. Relations between one class of data and the other one, or between data and unknown parameters a...Data are very important to build the digital mine. Data come from many sources, have different types and temporal states. Relations between one class of data and the other one, or between data and unknown parameters are more nonlinear. The unknown parameters are non random or random, among which the random parameters often dynamically vary with time. Therefore it is not accurate and reliable to process the data in building the digital mine with the classical least squares method or the method of the common nonlinear least squares. So a generalized nonlinear dynamic least squares method to process data in building the digital mine is put forward. In the meantime, the corresponding mathematical model is also given. The generalized nonlinear least squares problem is more complex than the common nonlinear least squares problem and its solution is more difficultly obtained because the dimensions of data and parameters in the former are bigger. So a new solution model and the method are put forward to solve the generalized nonlinear dynamic least squares problem. In fact, the problem can be converted to two sub problems, each of which has a single variable. That is to say, a complex problem can be separated and then solved. So the dimension of unknown parameters can be reduced to its half, which simplifies the original high dimensional equations. The method lessens the calculating load and opens up a new way to process the data in building the digital mine, which have more sources, different types and more temporal states.展开更多
A negative curvature method is applied to nonlinear least squares problems with indefinite Hessian approximation matrices. With the special structure of the method, a new switch is proposed to form a hybrid method. Nu...A negative curvature method is applied to nonlinear least squares problems with indefinite Hessian approximation matrices. With the special structure of the method, a new switch is proposed to form a hybrid method. Numerical experiments show that this method is feasible and effective for zero-residual, small-residual and large-residual problems.展开更多
When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To ...When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To solve this problem,we propose to add the nonparametric part(systematic errors)to the partial EIV model,and build the partial EIV model to weaken the influence of systematic errors.Then,having rewritten the model as a nonlinear model,we derive the formula of parameter estimations based on the penalized total least squares criterion.Furthermore,based on the second-order approximation method of precision estimation,we derive the second-order bias and covariance of parameter estimations and calculate the mean square error(MSE).Aiming at the selection of the smoothing factor,we propose to use the U curve method.The experiments show that the proposed method can mitigate the influence of systematic errors to a certain extent compared with the traditional method and get more reliable parameter estimations and its precision information,which validates the feasibility and effectiveness of the proposed method.展开更多
Data coming from different sources have different types and temporal states. Relations between one type of data and another ones, or between data and unknown parameters are almost nonlinear. It is not accurate and rel...Data coming from different sources have different types and temporal states. Relations between one type of data and another ones, or between data and unknown parameters are almost nonlinear. It is not accurate and reliable to process the data in building the digital earth with the classical least squares method or the method of the common nonlinear least squares. So a generalized nonlinear dynamic least squares method was put forward to process data in building the digital earth. A separating solution model and the iterative calculation method were used to solve the generalized nonlinear dynamic least squares problem. In fact, a complex problem can be separated and then solved by converting to two sub problems, each of which has a single variable. Therefore the dimension of unknown parameters can be reduced to its half, which simplifies the original high dimensional equations.展开更多
An algorithm for solving nonlinear least squares problems with general linear inequality constraints is described.At each step,the problem is reduced to an unconstrained linear least squares problem in a subs pace def...An algorithm for solving nonlinear least squares problems with general linear inequality constraints is described.At each step,the problem is reduced to an unconstrained linear least squares problem in a subs pace defined by the active constraints,which is solved using the quasi-Newton method.The major update formula is similar to the one given by Dennis,Gay and Welsch (1981).In this paper,we state the detailed implement of the algorithm,such as the choice of active set,the solution of subproblem and the avoidance of zigzagging.We also prove the globally convergent property of the algorithm.展开更多
In this paper, we construct a composite Milstein method for nonlinear stochastic differential delay equations. Then we analyze the mean square stability for this method and obtain the step size condition under which t...In this paper, we construct a composite Milstein method for nonlinear stochastic differential delay equations. Then we analyze the mean square stability for this method and obtain the step size condition under which the composite Milstein method is mean square stable. Moreover, we get the step size condition under which the composite Milstein method is global mean square stable. A nonlinear test stochastic differential delay equation is given for numerical tests. The results of numerical tests verify the theoretical results proposed.展开更多
Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficul...Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.展开更多
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
In this paper, a new equivalent nonlinearization method is developed and used in analysing the response of nonlinear systems to Gaussian while noise excitation. Its basic idea and calculation method are expounded. Wit...In this paper, a new equivalent nonlinearization method is developed and used in analysing the response of nonlinear systems to Gaussian while noise excitation. Its basic idea and calculation method are expounded. With the help of the presented method, several kinds of usual nonlinear random vibration systems are analyzed. The numerical results show that the mean square responses of the proposed approach are much closer to the exact solutions or Monte Carlo solutions, than that obtained from equivalent linearization method.展开更多
Data, including the spatial data and the non-spatial data, are the basis of all digital scientific engineering projects, such as the digital earth and the digital nation, the digital mine. The spatial data have the ch...Data, including the spatial data and the non-spatial data, are the basis of all digital scientific engineering projects, such as the digital earth and the digital nation, the digital mine. The spatial data have the characteristics of many sources, multi-dimension, multi-type, many time states and different accuracy. The spatial data firstly must be processed before using these data. The parameter estimation model to process the data is commonly the more complex nonlinear model including random parameters and non-random parameters. So a generalized nonlinear dynamic least squares method to process these data is put forward. According to the special structure of the generalized nonlinear dynamic least squares problem and the solution to the first order, a new solving model and a corresponding method to process the problem are put forward. The complex problem can be divided into two sub-problems so that the number of the unknown parameters is reduced largely. Therefore it reduces the computing difficulty and load.展开更多
Analytical and numerical studies of multi-degree-of-freedom(MDOF) nonlinear stochastic or deterministic dynamic systems have long been a technical challenge.This paper presents a highly-efficient method for determinin...Analytical and numerical studies of multi-degree-of-freedom(MDOF) nonlinear stochastic or deterministic dynamic systems have long been a technical challenge.This paper presents a highly-efficient method for determining the stationary probability density functions(PDFs) of MDOF nonlinear systems subjected to both additive and multiplicative Gaussian white noises. The proposed method takes advantages of the sufficient conditions of the reduced Fokker-Planck-Kolmogorov(FPK) equation when constructing the trial solution. The assumed solution consists of the analytically constructed trial solutions satisfying the sufficient conditions and an exponential polynomial of the state variables, and delivers a high accuracy of the solution because the analytically constructed trial solutions capture the main characteristics of the nonlinear system. We also make use of the concept from the data-science and propose a symbolic integration over a hypercube to replace the numerical integrations in a higher-dimensional space, which has been regarded as the insurmountable difficulty in the classical method of weighted residuals or stochastic averaging for high-dimensional dynamic systems. Three illustrative examples of MDOF nonlinear systems are analyzed in detail. The accuracy of the numerical results is validated by comparison with the Monte Carlo simulation(MCS) or the available exact solution. Furthermore, we also show the substantial gain in the computational efficiency of the proposed method compared with the MCS.展开更多
The Least Squares Support Vector Machines (LS-SVM) is an improvement to the SVM. Combined the LS-SVM with the Multi-Resolution Analysis (MRA),this letter proposes the Multi-resolution LS-SVM (MLS-SVM).The proposed alg...The Least Squares Support Vector Machines (LS-SVM) is an improvement to the SVM. Combined the LS-SVM with the Multi-Resolution Analysis (MRA),this letter proposes the Multi-resolution LS-SVM (MLS-SVM).The proposed algorithm has the same theoretical framework as MRA but with better approximation ability.At a fixed scale MLS-SVM is a classical LS-SVM,but MLS-SVM can gradually approximate the target function at different scales.In experiments,the MLS-SVM is used for nonlinear system identification,and achieves better identification accuracy.展开更多
The nonlinear least square adjustment is a head object studied in technology fields. The paper studies on the non derivative solution to the nonlinear dynamic least square adjustment and puts forward a new algorithm m...The nonlinear least square adjustment is a head object studied in technology fields. The paper studies on the non derivative solution to the nonlinear dynamic least square adjustment and puts forward a new algorithm model and its solution model. The method has little calculation load and is simple. This opens up a theoretical method to solve the linear dynamic least square adjustment.展开更多
基金Supported by the National Natural Science Foundation of China (10231060), the Special Research Found of Doctoral Program of Higher Education of China(200d0319003 ), the Research Project of Xuzhou Institute of Technology( XKY200622).
基金State Major Key Project for Basic ResearchesDecision Making and Information System Laboratory+1 种基金 Academy of Science of China Natural Science Foundation of Tsinghua University.
文摘In this paper we present a nonmonotone trust region method for nonlinear least squares problems with zero-residual and prove its convergence properties. The extensive numerical results are reported which show that the nonmonotone trust region method is generally superior to the usual trust region method.
文摘A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to the nonlinear Galerkin mixed element method so that it is stable for any combination of discrete velocity and pressure spaces without requiring the Babu*lka-Brezzi stability condition. The existence, uniqueness and convergence (at optimal rate) of the NGPLSME solution is proved in the case of sufficient viscosity (or small data).
文摘Data are very important to build the digital mine. Data come from many sources, have different types and temporal states. Relations between one class of data and the other one, or between data and unknown parameters are more nonlinear. The unknown parameters are non random or random, among which the random parameters often dynamically vary with time. Therefore it is not accurate and reliable to process the data in building the digital mine with the classical least squares method or the method of the common nonlinear least squares. So a generalized nonlinear dynamic least squares method to process data in building the digital mine is put forward. In the meantime, the corresponding mathematical model is also given. The generalized nonlinear least squares problem is more complex than the common nonlinear least squares problem and its solution is more difficultly obtained because the dimensions of data and parameters in the former are bigger. So a new solution model and the method are put forward to solve the generalized nonlinear dynamic least squares problem. In fact, the problem can be converted to two sub problems, each of which has a single variable. That is to say, a complex problem can be separated and then solved. So the dimension of unknown parameters can be reduced to its half, which simplifies the original high dimensional equations. The method lessens the calculating load and opens up a new way to process the data in building the digital mine, which have more sources, different types and more temporal states.
文摘A negative curvature method is applied to nonlinear least squares problems with indefinite Hessian approximation matrices. With the special structure of the method, a new switch is proposed to form a hybrid method. Numerical experiments show that this method is feasible and effective for zero-residual, small-residual and large-residual problems.
基金supported by the National Natural Science Foundation of China,Nos.41874001 and 41664001Support Program for Outstanding Youth Talents in Jiangxi Province,No.20162BCB23050National Key Research and Development Program,No.2016YFB0501405。
文摘When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To solve this problem,we propose to add the nonparametric part(systematic errors)to the partial EIV model,and build the partial EIV model to weaken the influence of systematic errors.Then,having rewritten the model as a nonlinear model,we derive the formula of parameter estimations based on the penalized total least squares criterion.Furthermore,based on the second-order approximation method of precision estimation,we derive the second-order bias and covariance of parameter estimations and calculate the mean square error(MSE).Aiming at the selection of the smoothing factor,we propose to use the U curve method.The experiments show that the proposed method can mitigate the influence of systematic errors to a certain extent compared with the traditional method and get more reliable parameter estimations and its precision information,which validates the feasibility and effectiveness of the proposed method.
文摘Data coming from different sources have different types and temporal states. Relations between one type of data and another ones, or between data and unknown parameters are almost nonlinear. It is not accurate and reliable to process the data in building the digital earth with the classical least squares method or the method of the common nonlinear least squares. So a generalized nonlinear dynamic least squares method was put forward to process data in building the digital earth. A separating solution model and the iterative calculation method were used to solve the generalized nonlinear dynamic least squares problem. In fact, a complex problem can be separated and then solved by converting to two sub problems, each of which has a single variable. Therefore the dimension of unknown parameters can be reduced to its half, which simplifies the original high dimensional equations.
基金Supported by The Natural Science Fundations of China and Jiangsu
文摘An algorithm for solving nonlinear least squares problems with general linear inequality constraints is described.At each step,the problem is reduced to an unconstrained linear least squares problem in a subs pace defined by the active constraints,which is solved using the quasi-Newton method.The major update formula is similar to the one given by Dennis,Gay and Welsch (1981).In this paper,we state the detailed implement of the algorithm,such as the choice of active set,the solution of subproblem and the avoidance of zigzagging.We also prove the globally convergent property of the algorithm.
基金Supported by National Natural Science Foundation of China(No.61272024)Anhui Provincial Natural Science Foundation(No.11040606M06)
文摘In this paper, we construct a composite Milstein method for nonlinear stochastic differential delay equations. Then we analyze the mean square stability for this method and obtain the step size condition under which the composite Milstein method is mean square stable. Moreover, we get the step size condition under which the composite Milstein method is global mean square stable. A nonlinear test stochastic differential delay equation is given for numerical tests. The results of numerical tests verify the theoretical results proposed.
基金Project supported by the National 973 Program (No.2004CB719402), the National Natural Science Foundation of China (No. 10372030)the Open Research Projects supported by the Project Fund of the Hubei Province Key Lab of Mechanical Transmission & Manufacturing Engineering Wuhan University of Science & Technology (No.2003A16).
文摘Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
文摘In this paper, a new equivalent nonlinearization method is developed and used in analysing the response of nonlinear systems to Gaussian while noise excitation. Its basic idea and calculation method are expounded. With the help of the presented method, several kinds of usual nonlinear random vibration systems are analyzed. The numerical results show that the mean square responses of the proposed approach are much closer to the exact solutions or Monte Carlo solutions, than that obtained from equivalent linearization method.
基金Project (40174003) supported by the National Natural Science Foundation of China
文摘Data, including the spatial data and the non-spatial data, are the basis of all digital scientific engineering projects, such as the digital earth and the digital nation, the digital mine. The spatial data have the characteristics of many sources, multi-dimension, multi-type, many time states and different accuracy. The spatial data firstly must be processed before using these data. The parameter estimation model to process the data is commonly the more complex nonlinear model including random parameters and non-random parameters. So a generalized nonlinear dynamic least squares method to process these data is put forward. According to the special structure of the generalized nonlinear dynamic least squares problem and the solution to the first order, a new solving model and a corresponding method to process the problem are put forward. The complex problem can be divided into two sub-problems so that the number of the unknown parameters is reduced largely. Therefore it reduces the computing difficulty and load.
基金Project supported by the National Natural Science Foundation of China (Nos.11672111,11332008,11572215,and 11602089)the Program for New Century Excellent Talents in Fujian Province’s University+1 种基金the Natural Science Foundation of Fujian Province of China (No.2019J01049)the Scholarship for Overseas Studies from Fujian Province of China。
文摘Analytical and numerical studies of multi-degree-of-freedom(MDOF) nonlinear stochastic or deterministic dynamic systems have long been a technical challenge.This paper presents a highly-efficient method for determining the stationary probability density functions(PDFs) of MDOF nonlinear systems subjected to both additive and multiplicative Gaussian white noises. The proposed method takes advantages of the sufficient conditions of the reduced Fokker-Planck-Kolmogorov(FPK) equation when constructing the trial solution. The assumed solution consists of the analytically constructed trial solutions satisfying the sufficient conditions and an exponential polynomial of the state variables, and delivers a high accuracy of the solution because the analytically constructed trial solutions capture the main characteristics of the nonlinear system. We also make use of the concept from the data-science and propose a symbolic integration over a hypercube to replace the numerical integrations in a higher-dimensional space, which has been regarded as the insurmountable difficulty in the classical method of weighted residuals or stochastic averaging for high-dimensional dynamic systems. Three illustrative examples of MDOF nonlinear systems are analyzed in detail. The accuracy of the numerical results is validated by comparison with the Monte Carlo simulation(MCS) or the available exact solution. Furthermore, we also show the substantial gain in the computational efficiency of the proposed method compared with the MCS.
文摘The Least Squares Support Vector Machines (LS-SVM) is an improvement to the SVM. Combined the LS-SVM with the Multi-Resolution Analysis (MRA),this letter proposes the Multi-resolution LS-SVM (MLS-SVM).The proposed algorithm has the same theoretical framework as MRA but with better approximation ability.At a fixed scale MLS-SVM is a classical LS-SVM,but MLS-SVM can gradually approximate the target function at different scales.In experiments,the MLS-SVM is used for nonlinear system identification,and achieves better identification accuracy.
文摘The nonlinear least square adjustment is a head object studied in technology fields. The paper studies on the non derivative solution to the nonlinear dynamic least square adjustment and puts forward a new algorithm model and its solution model. The method has little calculation load and is simple. This opens up a theoretical method to solve the linear dynamic least square adjustment.