期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparison of Nonlinear Local Lyapunov Vectors with Bred Vectors, Random Perturbations and Ensemble Transform Kalman Filter Strategies in a Barotropic Model 被引量:3
1
作者 Jie FENG Ruiqiang DING +1 位作者 Jianping LI Deqiang LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第9期1036-1046,共11页
The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to ... The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to catch the growing components in analysis errors. However, the bred vectors (BVs) are evolved on the same dynamical flow, which may increase the dependence of perturbations. In contrast, the nonlinear local Lyapunov vector (NLLV) scheme generates flow-dependent perturbations as in the breeding method, but regularly conducts the Gram-Schmidt reorthonormalization processes on the perturbations. The resulting NLLVs span the fast-growing perturbation subspace efficiently, and thus may grasp more com- ponents in analysis errors than the BVs. In this paper, the NLLVs are employed to generate initial ensemble perturbations in a barotropic quasi-geostrophic model. The performances of the ensemble forecasts of the NLLV method are systematically compared to those of the random pertur- bation (RP) technique, and the BV method, as well as its improved version--the ensemble transform Kalman filter (ETKF) method. The results demonstrate that the RP technique has the worst performance in ensemble forecasts, which indicates the importance of a flow-dependent initialization scheme. The ensemble perturbation subspaces of the NLLV and ETKF methods are preliminarily shown to catch similar components of analysis errors, which exceed that of the BVs. However, the NLLV scheme demonstrates slightly higher ensemble forecast skill than the ETKF scheme. In addition, the NLLV scheme involves a significantly simpler algorithm and less computation time than the ETKF method, and both demonstrate better ensemble forecast skill than the BV scheme. 展开更多
关键词 ensemble forecasting bred vector nonlinear local lyapunov vector ensemble transform Kalman filter
下载PDF
Impact of Perturbation Schemes on the Ensemble Prediction in a Coupled Lorenz Model
2
作者 Qian ZOU Quanjia ZHONG +4 位作者 Jiangyu MAO Ruiqiang DING Deyu LU Jianping LI Xuan LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期501-513,共13页
Based on a simple coupled Lorenz model,we investigate how to assess a suitable initial perturbation scheme for ensemble forecasting in a multiscale system involving slow dynamics and fast dynamics.Four initial perturb... Based on a simple coupled Lorenz model,we investigate how to assess a suitable initial perturbation scheme for ensemble forecasting in a multiscale system involving slow dynamics and fast dynamics.Four initial perturbation approaches are used in the ensemble forecasting experiments:the random perturbation(RP),the bred vector(BV),the ensemble transform Kalman filter(ETKF),and the nonlinear local Lyapunov vector(NLLV)methods.Results show that,regardless of the method used,the ensemble averages behave indistinguishably from the control forecasts during the first few time steps.Due to different error growth in different time-scale systems,the ensemble averages perform better than the control forecast after very short lead times in a fast subsystem but after a relatively long period of time in a slow subsystem.Due to the coupled dynamic processes,the addition of perturbations to fast variables or to slow variables can contribute to an improvement in the forecasting skill for fast variables and slow variables.Regarding the initial perturbation approaches,the NLLVs show higher forecasting skill than the BVs or RPs overall.The NLLVs and ETKFs had nearly equivalent prediction skill,but NLLVs performed best by a narrow margin.In particular,when adding perturbations to slow variables,the independent perturbations(NLLVs and ETKFs)perform much better in ensemble prediction.These results are simply implied in a real coupled air–sea model.For the prediction of oceanic variables,using independent perturbations(NLLVs)and adding perturbations to oceanic variables are expected to result in better performance in the ensemble prediction. 展开更多
关键词 ensemble prediction nonlinear local lyapunov vector(NLLV) ensemble transform Kalman filter(ETKF) coupled air-sea models
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部