By using Banach contraction principle, we obtain the global results (with respect to ||A||≠1) on the sufficient conditions for the existence of nonoscillatory solutions to a system of nonlinear neutral delay di...By using Banach contraction principle, we obtain the global results (with respect to ||A||≠1) on the sufficient conditions for the existence of nonoscillatory solutions to a system of nonlinear neutral delay difference equations with matrix coefficients.展开更多
This paper is concerned with the study of asymptotic behavior of nonoscillatory solutions of second order neutral nonlinear difference equations of theformwhere λ∈ {-1,1},△ is the forword difference operator define...This paper is concerned with the study of asymptotic behavior of nonoscillatory solutions of second order neutral nonlinear difference equations of theformwhere λ∈ {-1,1},△ is the forword difference operator defined by △x_n=x_n+1 x+n.展开更多
Consider the second order nonlinear neutral difference equationThe sufficient conditions are established for the oscillation and asymptotic behavior of the solutions of this equation.
基金This work is supported by the National Natural Sciences Foundation of China under Grant 10361006the Natural Sciences Foundation of Yunnan Province under Grant 2003A0001MYouth Natural Sciences Foundation of Yunnan University under Grant 2003Q032C and Sciences Foundation of Yunnan Educational Community under Grant 04Y239A.
文摘By using Banach contraction principle, we obtain the global results (with respect to ||A||≠1) on the sufficient conditions for the existence of nonoscillatory solutions to a system of nonlinear neutral delay difference equations with matrix coefficients.
文摘This paper is concerned with the study of asymptotic behavior of nonoscillatory solutions of second order neutral nonlinear difference equations of theformwhere λ∈ {-1,1},△ is the forword difference operator defined by △x_n=x_n+1 x+n.
文摘Consider the second order nonlinear neutral difference equationThe sufficient conditions are established for the oscillation and asymptotic behavior of the solutions of this equation.