期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Development of A Fully Nonlinear Numerical Wave Tank 被引量:3
1
作者 陈永平 李志伟 张长宽 《海洋工程:英文版》 2004年第4期501-514,共14页
A fully nonlinear numerical wave tank based on the solution of the σ-transformed Navier-Stokes equation is developed in this study. The numerical wave is generated from the inflow boundary, where the surface elevati... A fully nonlinear numerical wave tank based on the solution of the σ-transformed Navier-Stokes equation is developed in this study. The numerical wave is generated from the inflow boundary, where the surface elevation and/or velocity are specified by use of the analytical solution or the laboratory data. The Sommerfeld/Orlanski radiation condition in conjunction with an artificial damping zone is applied to reduce wave reflection from the outflow boundary. The whole numerical solution procedures are split into three steps, i.e., advection, diffusion and propagation, and a new method, the Lagrange-Euler Method, instead of the MAC or VOF method, is introduced to solve the free surface elevation at the new time step. Several typical wave cases, including solitary waves, regular waves and irregular waves, are simulated in the wave tank. The robustness and accuracy of the NWT are verified by the good agreement between the numerical results and the linear or nonlinear analytical solutions. This research will be further developed by study of wave-wave, wave-current, wave-structure or wave-jet interaction in the future. 展开更多
关键词 nonlinear numerical wave tank Lagrange-Euler method free sloshing wave solitary wave regular wave irregular wave
下载PDF
Numerical modelling of nonlinear extreme waves in presence of wind 被引量:1
2
作者 NING Dezhi DU Jun +2 位作者 BAI Wei ZHANG Chongwei TENG Bin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第9期90-98,共9页
A numerical wave flume with fully nonlinear free surface boundary conditions is adopted to investigate the temporal characteristics of extreme waves in the presence of wind at various speeds. Incident wave trains are ... A numerical wave flume with fully nonlinear free surface boundary conditions is adopted to investigate the temporal characteristics of extreme waves in the presence of wind at various speeds. Incident wave trains are numerically generated by a piston-type wave maker, and the wind-excited pressure is introduced into dynamic boundary conditions using a pressure distribution over steep crests, as defined by Jeffreys' sheltering mechanism.A boundary value problem is solved by a higher-order boundary element method(HOBEM) and a mixed Eulerian-Lagrangian time marching scheme. The proposed model is validated through comparison with published experimental data from a focused wave group. The influence of wind on extreme wave properties,including maximum extreme wave crest, focal position shift, and spectrum evolution, is also studied. To consider the effects of the wind-driven currents on a wave evolution, the simulations assume a uniform current over varying water depth. The results show that wind causes weak increases in the extreme wave crest, and makes the nonlinear energy transfer non-reversible in the focusing and defocusing processes. The numerical results also provide a comparison to demonstrate the shifts at focal points, considering the combined effects of the winds and the wind-driven currents. 展开更多
关键词 extreme waves fully nonlinear numerical wave flume higher-order boundary element wave focusing Jeffreys' sheltering mechanism
下载PDF
Numerical simulation for the two-dimensional nonlinear shallow water waves
3
作者 Tao Jianhua and Zhang Yan Department of Mechanics, Tianjin University, Tianjin, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1990年第3期449-457,共9页
This study deals with the general numerical model to simulate the two-dimensional tidal flow, flooding wave (long wave) and shallow water waves (short wave). The foundational model is based on nonlinear Boussinesq equ... This study deals with the general numerical model to simulate the two-dimensional tidal flow, flooding wave (long wave) and shallow water waves (short wave). The foundational model is based on nonlinear Boussinesq equations. Numerical method for modelling the short waves is investigated in detail. The forces, such as Coriolis forces, wind stress, atmosphere and bottom friction, are considered. A two-dimensional implicit difference scheme of Boussinesq equations is proposed. The low-reflection outflow open boundary is suggested. By means of this model,both velocity fields of circulation current in a channel with step expansion and the wave diffraction behind a semi-infinite breakwater are computed, and the results are satisfactory. 展开更多
关键词 numerical simulation for the two-dimensional nonlinear shallow water waves LENGTH THAN
下载PDF
NUMERICAL ANALYSIS OF NONLINEAR WAVE FORCE ON LARGE BODY WITH ARBITRARY SHAPE
4
作者 Li Jianchu , Fan Jianjun Huang Hening Professor, Dalian Institute of TechnologyPostgraduate, Dalian Institute of TechnologyEngineer, Institute of Marine Environmental Protection State Oceanic Administration 《China Ocean Engineering》 SCIE EI 1989年第2期131-140,共10页
In this paper a nonlinear diffraction theory due to Stoke's 2nd-order wave for computing the wave force on the large body is presented. The radiation condition as r-∞ for 2nd-order scattered potential has been st... In this paper a nonlinear diffraction theory due to Stoke's 2nd-order wave for computing the wave force on the large body is presented. The radiation condition as r-∞ for 2nd-order scattered potential has been studied in connection with asymptotic solutions. A numerical procedure has been developed for the purpose of calculating the nonlinear wave force on the large body with arbitrary shape. 展开更多
关键词 numerical ANALYSIS OF nonlinear wave FORCE ON LARGE BODY WITH ARBITRARY SHAPE BODY BODY
下载PDF
Numerical study of resonance induced by wave action on multiple rectangular boxes with narrow gaps 被引量:5
5
作者 NING Dezhi SU Xiaojie +1 位作者 ZHAO Ming TENG Bin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第5期92-102,共11页
By introducing a source term into the Laplace equation, a two-dimensional fully nonlinear time-domain numerical wave flume (NWF) is developed to investigate the resonance induced by the interaction between waves and... By introducing a source term into the Laplace equation, a two-dimensional fully nonlinear time-domain numerical wave flume (NWF) is developed to investigate the resonance induced by the interaction between waves and multiple objects with narrow gaps. In the numerical model, the fully nonlinear kinematic and dynamic boundary conditions are satisfied on the instantaneous free surface and the constant artificial damping is employed in the gaps to approximate the viscous dissipation due to vortex motion and flow separation. The computational domain is discretized using a higher-order boundary element method (HOBEM). The proposed model is firstly validated against the published experimental data and numerical results of the wave height in the narrow gap between two boxes, the wave heights in the two gaps of three boxes, and wave loads on the boxes. Then, the extensive numerical experiments are performed to study the influences of the number of the boxes and the gap spacing on the resonant frequency, reflected and transmitted wave heights and wave loads on the boxes. 展开更多
关键词 narrow gap RESONANCE higher-order boundary element nonlinear numerical wave flume
下载PDF
Comparison of linear and nonlinear extreme wave statistics
6
作者 DMITRY Chalikov ALEXANDER V.Babanin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第5期99-105,共7页
An extremely large("freak") wave is a typical though rare phenomenon observed in the sea. Special theories(for example, the modulation instability theory) were developed to explain mechanics and appearance of fr... An extremely large("freak") wave is a typical though rare phenomenon observed in the sea. Special theories(for example, the modulation instability theory) were developed to explain mechanics and appearance of freak waves as a result of nonlinear wave-wave interactions. In this paper, it is demonstrated that the freak wave appearance can be also explained by superposition of linear modes with the realistic spectrum. The integral probability of trough-to-crest waves is calculated by two methods: the first one is based on the results of the numerical simulation of a wave field evolution performed with one-dimensional and two-dimensional nonlinear models.The second method is based on calculation of the same probability over the ensembles of wave fields constructed as a superposition of linear waves with random phases and the spectrum similar to that used in the nonlinear simulations. It is shown that the integral probabilities for nonlinear and linear cases are of the same order of values 展开更多
关键词 freak waves numerical modeling probability of linear and nonlinear waves ensemble modeling
下载PDF
Large-scale edge waves generated by a moving atmospheric pressure 被引量:1
7
作者 Chao An Philip L-F. Liu Seung Nam Seo 《Theoretical & Applied Mechanics Letters》 CAS 2012年第4期13-16,共4页
Long waves generated by a moving atmospheric pressure distribution, associated with a storm, in coastal region are investigated numerically. For simplicity the moving atmospheric pressure is assumed to be moving only ... Long waves generated by a moving atmospheric pressure distribution, associated with a storm, in coastal region are investigated numerically. For simplicity the moving atmospheric pressure is assumed to be moving only in the alongshore direction and the beach slope is assumed to be a constant in the on-offshore direction. By solving the linear shallow water equations we obtain numerical solutions for a wide range of physical parameters, including storm size (2a), storm speed (U), and beach slope (a). Based on the numerical results, it is determined that edge wave packets are generated if the storm speed is equal to or greater than the critical velocity, Ucr, which is defined as the phase speed of the fundamental edge wave mode whose wavelength is scaled by the width of the storm size. The length and the location of the positively moving edge wave packet is roughly Ut/2 〈 y 〈 Ut, where y is in the alongshore direction and t is the time. Once the edge wave packet is generated, the wavelength is the same as that of the fundamental edge wave mode corresponding to the storm speed and is independent of the storm size, which can, however, affect the wave amplitude. When the storm speed is less than the critical velocity, the primary surface signature is a depression directly correlated to the atmospheric pressure distribution. 展开更多
关键词 edge wave packet moving atmospheric pressure linear and nonlinear shallow water waves numerical solutions
下载PDF
Governing equations and numerical solutions of tension leg platform with finite amplitude motion
8
作者 曾晓辉 沈晓鹏 吴应湘 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第1期37-49,共13页
It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP,... It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP, The tensions of the tethers are also nonlinear functions of the displacement of TLP. Then the displacement, the velocity and the acceleration of TLP should be taken into account when loads are calculated. In addition, equations of motions should be set up on the instantaneous position. A theo- retical model for analyzing the nonlinear behavior of a TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e., finite displace- ment, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force, Based on the theoretical model, the comprehensive nonlinear differential equations are deduced. Then the nonlinear dynamic analysis of ISSC TLP in regular waves is performed in the time domain. The degenerative linear solution of the proposed nonlinear model is verified with existing published one. Furthermore, numerical results are presented, which illustrate that nonlinearities exert a significant influence on the dynamic responses of the TLP. 展开更多
关键词 tension leg platform (TLP) finite displacement nonlinear dynamic response numerical solution wave loads
下载PDF
Numerical simulation of nonlinear propagation of sound waves in a finite horn 被引量:4
9
作者 HOU Wei PAN Haoran +2 位作者 SONG Weihua JING Xiaodong SUN Xiaofeng 《Chinese Journal of Acoustics》 CSCD 2015年第2期138-152,共15页
Nonlinear acoustic propagation generated by a piston in a finite horn is numerically studied. A quasi-one-dimensional nonlinear model with varying cross-section uses high-order low-dispersion numerical schemes to solv... Nonlinear acoustic propagation generated by a piston in a finite horn is numerically studied. A quasi-one-dimensional nonlinear model with varying cross-section uses high-order low-dispersion numerical schemes to solve the governing equation. Because of the nonlinear wave distortion and reflected sound waves at the mouth, broadband time-domain impedance boundary conditions are employed. The impedance approximation can be optimized to identify the complex-conjugate pole-residue pairs of the impedance functions, which can be calculated by fast and efficient recursive convolution. The numerical results agree very well with experi- mental data in the situations of weak nonlinear wave propagation in an exponential horn, it is shown that the model can describe the broadband characteristics caused by nonlinear distortion. Moreover, finite-amplitude acoustic propagation in types of horns is simulated, including hyperbolic, conical, exponential and sinusoidal horns. It is found that sound pressure levels at the horn mouth are strongly affected by the horn profiles, the driving velocity and frequency of the piston. The paper also discusses the influence of the horn geometry on nonlinear waveform distortion. 展开更多
关键词 numerical simulation of nonlinear propagation of sound waves in a finite horn
原文传递
BIFURCATIONS AND NEW EXACT TRAVELLING WAVE SOLUTIONS OF THE COUPLED NONLINEAR SCHRDINGER-KdV EQUATIONS 被引量:1
10
作者 Heng Wang Shuhua Zheng 《Annals of Applied Mathematics》 2016年第3期288-295,共8页
By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric spa... By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric space are given. All possible bounded travelling wave solutions such as solitary wave solutions and periodic travelling wave solutions are obtained. With the aid of Maple software, the numerical simulations are conducted for solitary wave solutions and periodic travelling wave solutions to the coupled nonlinear Schrdinger-KdV equations. The results show that the presented findings improve the related previous conclusions. 展开更多
关键词 dynamical system method coupled nonlinear SchrdingerKd V equations solitary wave solution periodic travelling wave solution numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部