The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitud...The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitude of pulses in burst with linear polarization output and time gap adjustable, we propose a new method by the harmonic beam combining(HBC).The beam combining is commonly used in adding pulses into the output beam while maintaining the pulse waveform and beam quality. In the HBC, dichroic mirrors are used to combine laser pulses of fundamental wave(FW) into harmonic wave(HW), and nonlinear crystals are used to convert the FW into HW. Therefore, HBC can add arbitrarily more HW pulses to generate pulse-burst in linear polarization with simple structure. The amplitude of each pulse in bursts can be adjusted the same to increase the stability of the burst, the time gap of each pulse can be adjusted precisely by proper time delay. Because HBC adds pulses sequentially, the peak power density of the burst is the same as each pulse, pulses can be combined without concern of back-conversion which often occurs in high peak power density. In the demonstration, the extendibility of HBC was verified by combining two beams with a third beam. The combined efficiency rates were larger than 99%, and the beam quality of each beam was maintained at M^(2)≈1.4.展开更多
A Weyl node is characterized by its chirality and tilt.We develop a theory of how nth-order nonlinear optical conductivity behaves under transformations of anisotropic tensor and tilt, which clarifies how chirality-de...A Weyl node is characterized by its chirality and tilt.We develop a theory of how nth-order nonlinear optical conductivity behaves under transformations of anisotropic tensor and tilt, which clarifies how chirality-dependent and-independent parts of optical conductivity transform under the reversal of tilt and chirality.Built on this theory, we propose ferromagnetic Mn Bi2Te4as a magnetoelectrically regulated, terahertz optical device, by magnetoelectrically switching the chiralitydependent and-independent DC photocurrents.These results are useful for creating nonlinear optical devices based on the topological Weyl semimetals.展开更多
Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an ef...Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs.In this paper,the geometry,bonding properties,electronic structure,absorption spectrum,and nonlinear optical(NLO)properties of superalkaline M_(3)O(M=Li,Na)-doped cyclo[18]carbon were studied by using density functional theory.M_(3)O and the C_(18) rings are not coplanar.The C_(18) ring still exhibits alternating long and short bonds.The charge transfer between M_(3)O and C_(18) forms stable[M_(3)O]+[C_(18)]-ionic complexes.C_(18)M_(3)O(M=Li,Na)shows striking optical nonlinearity,i.e.,their first-and second-order hyperpolarizability(βvec andγ||)increase considerably atλ=1907 nm and 1460 nm.展开更多
Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and ...Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω^(-1)∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.展开更多
The time delay(TD) of femtoseeond pulses is studied for the first time, which generated from the nonlinear optical loop mirror composed of dispersion decreasing fiber(DDF-NOLM). The results show that the higher-or...The time delay(TD) of femtoseeond pulses is studied for the first time, which generated from the nonlinear optical loop mirror composed of dispersion decreasing fiber(DDF-NOLM). The results show that the higher-order dispersion and high order nonlinearities such as Raman frequency shift play a key role in producing TD, and that the time delay ean be suppressed by the third-order dispersion(TOD) in DDF-NOLM. The mechanism of the time delay suppression is also discussed in detail.展开更多
The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured l...The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured light.Because the complexity of these optical fields is generally understood in terms of interference,the tools have historically been linear optical elements that create the desired superpositions.For this reason,despite the long and impressive history of nonlinear optics,only recently has the spatial structure of light in nonlinear processes come to the fore.In this review we provide a concise theoretical framework for understanding nonlinear optics in the context of structured light,offering an overview and perspective on the progress made,and the challenges that remain.展开更多
A novel tolane 4-methoxy-4'-nitro-diphenyl-acetylene (MONA) has been prepared quantitatively by reacting cuprous p-methoxy phenyl-acetylene with p-iodonitrobenzene. A single crystal of the Moan was grown by soluti...A novel tolane 4-methoxy-4'-nitro-diphenyl-acetylene (MONA) has been prepared quantitatively by reacting cuprous p-methoxy phenyl-acetylene with p-iodonitrobenzene. A single crystal of the Moan was grown by solution growth method. The crystal was then characterized by X-ray diffraction structure analysis and second-harmonic generation(SHG)investigation. Polymorphous crystal forms of the MONA were grown from different solvents having different nonlinear optical properties depending on their different crystal structures. The relationship between the crystal growth and crystal structure is discusse.展开更多
GaAs nanocrystals were prepared via a simple mechanical ball milling technique. The prepared GaAs nanocrystals have high purity and could form colloidal ethanol suspension without any surfactant additives. The colloid...GaAs nanocrystals were prepared via a simple mechanical ball milling technique. The prepared GaAs nanocrystals have high purity and could form colloidal ethanol suspension without any surfactant additives. The colloidal GaAs nanocrystal suspension displayed excellent two-photon absorption property over the visible and near-infrared region from 490 nm to 1064 nm, which enables it to become a promising broadband optical limiting material.展开更多
This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution...This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.展开更多
Graphene has excellent thirdorder nonlinear optical(NLO)properties due to its unique electronic band structure and wideband gap tunability.This paper focuses on the research progress of graphene and its composite mate...Graphene has excellent thirdorder nonlinear optical(NLO)properties due to its unique electronic band structure and wideband gap tunability.This paper focuses on the research progress of graphene and its composite materials in nonlinear optics in recent years.In this review,recent results on graphene(or graphene oxide)-metal nanoparticles(G-MNPs),graphene-metal-oxide nanoparticles(G-MONPs),graphene-metal sulfide nanoparticles(G-MSNPs),and graphene-organic molecular composites(G-OM)have been discussed.In addition,the enhancement mechanism of nonlinear absorption(NLA)and optical limiting(OL)have also been covered.展开更多
zinc cadmium thiocyanate (ZCTC), ZnCd(SCN)_4, has been discoveredas a UV second-order nonlinear optical coordination crystal. Titsthermal and transmission Properties are reported. The thermaldecomposition is character...zinc cadmium thiocyanate (ZCTC), ZnCd(SCN)_4, has been discoveredas a UV second-order nonlinear optical coordination crystal. Titsthermal and transmission Properties are reported. The thermaldecomposition is characterized by using the X-ray Powder diffraction(XRPD) and infrared (IR) spectroscopy at room temperature. TheAbsorptions of intrinsic ions and ZCTC in a solution state arediscussed as well as Transmission properties of the ZCTC crystal. Aneffective method of reducing the surface Reflection loss of ZCTCcrystal is introduced.展开更多
The linear and nonlinear optical properties of a hydrogenic donor in a disc-like parabolic quantum dot in the presence of an external magnetic field are studied. The calculations were performed within the effective ma...The linear and nonlinear optical properties of a hydrogenic donor in a disc-like parabolic quantum dot in the presence of an external magnetic field are studied. The calculations were performed within the effective mass approximation, using the matrix diagonalization method and the compact density-matrix approach. The linear and nonlinear optical absorption coefficients between the ground (L =0) and the first excited state (L = 1) have been examined based on the computed energies and wave functions. We find that the linear, nonlinear third-order, and total optical absorption coefficients are strongly affected by the confinement strength of QDs, the external magnetic field, and the incident optical intensity.展开更多
A chiral lanthanide metal-organic framework based on enantiopure camphoric acid (D-H2cam), [Nd3(D-cam)8(H2O)4Cl]n (1), has been synthesized and characterized by single-crystal X-ray structural analysis, elemen...A chiral lanthanide metal-organic framework based on enantiopure camphoric acid (D-H2cam), [Nd3(D-cam)8(H2O)4Cl]n (1), has been synthesized and characterized by single-crystal X-ray structural analysis, elemental analysis, IR, thermal gravimetric, and X-ray powder diffraction. Crystal data for the title compound are as follows: orthorhombic system, space group P212121 with a = 13.8287(7), b = 14.0715(7), c = 25.7403(12) A^°, V = 5008.8(4) A^°3, Mr = 1333.08, Z = 4, F(000) = 2644, Dc = 1.768 g/cm^3, μ(MoKα) = 3.189 mm^-1, the final R = 0.0351 and wR = 0.0814 (I 〉 2σ(I)). Compound 1 displays an 8-connected bcu topology 3D framework and hydrogen-bonding interactions stabilize the solid-state structure. The vibrational circular dichroism (VCD) spectrum and second-order nonlinear optical effect of compound 1 have been studied in the solid state.展开更多
A new organic/inorganic hybrid nonlinear optical (NLO) material was developed by the sol-gel process of an alkoxysilane dye with tetraethoxysilane. A NLO moiety based on 4-nitro-4 ' -hydroxy azobenzene was covalen...A new organic/inorganic hybrid nonlinear optical (NLO) material was developed by the sol-gel process of an alkoxysilane dye with tetraethoxysilane. A NLO moiety based on 4-nitro-4 ' -hydroxy azobenzene was covalently bonded to the triethoxysilane derivative, i.e, gamma -isocyanatopropyl triethoxysilane. The preparation process and properties of the sol-gel derived NLO polymer were studied and characterized by SEM, FTIR,H-1-NMR, UV-Vis, DSC and second harmonic generation (SHG) measurement. The results indicated that the chemical bonding of the chromophores to the inorganic SiO2 networks induces low dipole alignment relaxation and preferable orientational stability. The SHG measurements also showed that the bonded polymer film containing 75 wt% of the akoxysilane dye has a high electro-optic coefficient (r(33)) of 7.1 pm/V at 1.1 mum wavelength, and exhibit good SHG stability, the r(33) values can maintain about 92.7% of its initial value at room temperature for 90 days, and can maintain about 59.3% at 100 degreesC for 300 min.展开更多
On the basis of adding the bond functions (3s 3p 2d) to the basis sets 6-311G ( 2d 2p ) for increasing the efficiency of the basis sets , we have carried out the MP2 calculations of nonlinear optical properties includ...On the basis of adding the bond functions (3s 3p 2d) to the basis sets 6-311G ( 2d 2p ) for increasing the efficiency of the basis sets , we have carried out the MP2 calculations of nonlinear optical properties includintg dipole moment uo,polarizibili- ty ao and hyperpolarizability , for CH4-nFn (n = 1 , 2 , 3). The results are in good a- greement with those of experimentsl The roles of the bond functions in the calcula- tions are shown , i. e., the improved values of the properties are about 2%-7% at the SCF level and about 6%-30% at the correlated level (MP2). It is shown that the more important role of the bond functions in calculating is the im- provement of the effects of the corrections of electronic correlations and the increase of the effects is in the order of. In addition , it is also shown that the cal-, culated value of a property does not change with the bond-function location in our calculations except for the regions close to the nuclei in a molecule.展开更多
Dond function basis sets have been used to calculate the molecular nonlinear optical properties which include hyperpolarizability βo , polarizability ao , and dipole moment μo for six molecules. The calculations at ...Dond function basis sets have been used to calculate the molecular nonlinear optical properties which include hyperpolarizability βo , polarizability ao , and dipole moment μo for six molecules. The calculations at the fourth-order Moller-Plesset approximation (MP4) have recovered more than 90% of the experimental values βo , comparecl to that as low as 75% by the other authors. The calculated values of αo and iuo are also in good agreement with those of experiments and superior to that from other work. It is shown that the bond functions improve the calculated results at SCF level and especially at the level of the correction of electronic correlation (MP2 and MP4).展开更多
Static second-order nonlinear optical effects of amino acid zinc(II) porphyrins 1, 2, 3 and 4 were calculated by the TDHF/PM3 method based on the molecular structures optimized at the semiempirical PM3 quantum chemi...Static second-order nonlinear optical effects of amino acid zinc(II) porphyrins 1, 2, 3 and 4 were calculated by the TDHF/PM3 method based on the molecular structures optimized at the semiempirical PM3 quantum chemistry level, showing due to the cancellation of symmetric center, these amino acid zinc(II) porphyrins exhibit second order nonlinear optical response. The analysis of β components indicated that these amino acid zinc(II) porphyrins are of multipola- rizabilities, and they may be ascribed as the “mixture” of octupolar and dipoar molecules with ||βJ=3||/||βJ=1|| ≈ 5. It is found that there are no significant differences between the static β values of non-chiral and chiral amino acid zinc(II) porphyrins. However, the βxyz component, which is quite important to quadratic macroscopic χ (2) susceptibility of chiral material, is increased significantly with the increase of side chain group of amino acids.展开更多
UV-Vis spectrum and the third-order nonlinear optical properties of the chiral camphor-derived β-diketonate have been studied at the B3LYP/6-31G* level. The results showed that the introduction of electron-drawing g...UV-Vis spectrum and the third-order nonlinear optical properties of the chiral camphor-derived β-diketonate have been studied at the B3LYP/6-31G* level. The results showed that the introduction of electron-drawing group -CF3 and -C3F7 on β-diketonate made the strongest absorption peak red-shift and the lowest energy absorption blue-shied. Introduction of -OC2H5 on the benzene or pyridine ring made the lowest energy absorption blue-shift. When the -C2H3 was introduced on the benzene or pyridine ring, the lowest energy absorption was red-shifted. Introduction of electron-donating group on β-diketonate can enlarge their nonlinear optical properties. On the contrary, the introduction of electron-drawing group dropped it down.展开更多
We quantitatively investigate the third-order optical nonlinear response of Co-doped ZnO thin films prepared by magnetron sputtering using the Z-scan method. The two-photon absorption and optical Kerr effect are revea...We quantitatively investigate the third-order optical nonlinear response of Co-doped ZnO thin films prepared by magnetron sputtering using the Z-scan method. The two-photon absorption and optical Kerr effect are revealed to contribute to the third-order nonlinear response of the Co-doped ZnO films. The nonlinear absorption coefficient β is determined to be approximately 8.8 × 10-5 cm/W and the third-order nonlinear susceptibility X(3) is 2.93 × 10-6 esu. The defect-associated energy levels within the band gap are suggested to be responsible for the enhanced nonlinear response observed in Co-doped ZnO films.展开更多
Nonlinear optical imaging is a versatile tool that has been proven to be exceptionally useful in various research fields.However,due to the use of photomultiplier tubes(PMTs),the wide application of nonlinear optical ...Nonlinear optical imaging is a versatile tool that has been proven to be exceptionally useful in various research fields.However,due to the use of photomultiplier tubes(PMTs),the wide application of nonlinear optical imaging is limited by the incapability of imaging under am-bient light.In this paper,we propose and demonstrate a new optical imaging detection method based on optical parametric amplification(OPA).As a nonlinear optical process,OPA in-trinsically rejects ambient light photons by coherence gating.Periodical poled lithium niobate(PPLN)crystals are used in this study as the media for OPA.Compared to bulk nonlinear optical crystals,PPLN crystals support the generation of OPA signal with lower pump power.Therefore,this characteristic of PPLN crystals is particularly beneficial when using high-repetition-rate lasers,which facilitate high-speed optical signal detection,such as in spec-troscopy and imaging.A PPLN-based OPA system was built to amplify the emitted imaging signal from second harmonic generation(SHG)and coherent anti-Stokes Raman scattering(CARS)microscopy imaging,and the amplified optical signal was strong enough to be detected by a biased photodiode under ordinary room light conditions.With OPA detection,ambient-light-on SHG and CARS imaging becomes possible,and achieves a similar result as PMT detection under strictly dark environments.These results demonstrate that OPA can be used as a substitute for PMTs in nonlinear optical imaging to adapt it to various applications with complex.light ing conditions.展开更多
基金Project supported by Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No.2020029)。
文摘The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitude of pulses in burst with linear polarization output and time gap adjustable, we propose a new method by the harmonic beam combining(HBC).The beam combining is commonly used in adding pulses into the output beam while maintaining the pulse waveform and beam quality. In the HBC, dichroic mirrors are used to combine laser pulses of fundamental wave(FW) into harmonic wave(HW), and nonlinear crystals are used to convert the FW into HW. Therefore, HBC can add arbitrarily more HW pulses to generate pulse-burst in linear polarization with simple structure. The amplitude of each pulse in bursts can be adjusted the same to increase the stability of the burst, the time gap of each pulse can be adjusted precisely by proper time delay. Because HBC adds pulses sequentially, the peak power density of the burst is the same as each pulse, pulses can be combined without concern of back-conversion which often occurs in high peak power density. In the demonstration, the extendibility of HBC was verified by combining two beams with a third beam. The combined efficiency rates were larger than 99%, and the beam quality of each beam was maintained at M^(2)≈1.4.
基金Project supported by the National Key R&D Program of China (Grant Nos.2018YFA, 0305601, and 2021YFA1400100)the National Natural Science Foundation of China (Grant Nos.12274003, 11725415, and 11934001)the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302600)。
文摘A Weyl node is characterized by its chirality and tilt.We develop a theory of how nth-order nonlinear optical conductivity behaves under transformations of anisotropic tensor and tilt, which clarifies how chirality-dependent and-independent parts of optical conductivity transform under the reversal of tilt and chirality.Built on this theory, we propose ferromagnetic Mn Bi2Te4as a magnetoelectrically regulated, terahertz optical device, by magnetoelectrically switching the chiralitydependent and-independent DC photocurrents.These results are useful for creating nonlinear optical devices based on the topological Weyl semimetals.
基金Project supported by the Natural Science Foundation of Anhui Province(Grant No.1908085MA12)the National Natural Science Foundation of China(Grant No.21703222)。
文摘Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs.In this paper,the geometry,bonding properties,electronic structure,absorption spectrum,and nonlinear optical(NLO)properties of superalkaline M_(3)O(M=Li,Na)-doped cyclo[18]carbon were studied by using density functional theory.M_(3)O and the C_(18) rings are not coplanar.The C_(18) ring still exhibits alternating long and short bonds.The charge transfer between M_(3)O and C_(18) forms stable[M_(3)O]+[C_(18)]-ionic complexes.C_(18)M_(3)O(M=Li,Na)shows striking optical nonlinearity,i.e.,their first-and second-order hyperpolarizability(βvec andγ||)increase considerably atλ=1907 nm and 1460 nm.
文摘Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω^(-1)∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.
文摘The time delay(TD) of femtoseeond pulses is studied for the first time, which generated from the nonlinear optical loop mirror composed of dispersion decreasing fiber(DDF-NOLM). The results show that the higher-order dispersion and high order nonlinearities such as Raman frequency shift play a key role in producing TD, and that the time delay ean be suppressed by the third-order dispersion(TOD) in DDF-NOLM. The mechanism of the time delay suppression is also discussed in detail.
文摘The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured light.Because the complexity of these optical fields is generally understood in terms of interference,the tools have historically been linear optical elements that create the desired superpositions.For this reason,despite the long and impressive history of nonlinear optics,only recently has the spatial structure of light in nonlinear processes come to the fore.In this review we provide a concise theoretical framework for understanding nonlinear optics in the context of structured light,offering an overview and perspective on the progress made,and the challenges that remain.
文摘A novel tolane 4-methoxy-4'-nitro-diphenyl-acetylene (MONA) has been prepared quantitatively by reacting cuprous p-methoxy phenyl-acetylene with p-iodonitrobenzene. A single crystal of the Moan was grown by solution growth method. The crystal was then characterized by X-ray diffraction structure analysis and second-harmonic generation(SHG)investigation. Polymorphous crystal forms of the MONA were grown from different solvents having different nonlinear optical properties depending on their different crystal structures. The relationship between the crystal growth and crystal structure is discusse.
基金The work was financially supported by the National Natural Science Foundation of China (Nos. 10104003, 10204003, 90206003, and 90101027) and the National Key Basic Research Special Foundation of China (No.TG1999075207).
文摘GaAs nanocrystals were prepared via a simple mechanical ball milling technique. The prepared GaAs nanocrystals have high purity and could form colloidal ethanol suspension without any surfactant additives. The colloidal GaAs nanocrystal suspension displayed excellent two-photon absorption property over the visible and near-infrared region from 490 nm to 1064 nm, which enables it to become a promising broadband optical limiting material.
基金Project supported by the National Natural Science Foundation of China (Grant No 60178025) and the Key Laboratory of 0ptoelectronics Information Technical Science of Ministry of Education, Institute of Modern 0ptics, Nankai University, China.
文摘This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.11375136).
文摘Graphene has excellent thirdorder nonlinear optical(NLO)properties due to its unique electronic band structure and wideband gap tunability.This paper focuses on the research progress of graphene and its composite materials in nonlinear optics in recent years.In this review,recent results on graphene(or graphene oxide)-metal nanoparticles(G-MNPs),graphene-metal-oxide nanoparticles(G-MONPs),graphene-metal sulfide nanoparticles(G-MSNPs),and graphene-organic molecular composites(G-OM)have been discussed.In addition,the enhancement mechanism of nonlinear absorption(NLA)and optical limiting(OL)have also been covered.
文摘zinc cadmium thiocyanate (ZCTC), ZnCd(SCN)_4, has been discoveredas a UV second-order nonlinear optical coordination crystal. Titsthermal and transmission Properties are reported. The thermaldecomposition is characterized by using the X-ray Powder diffraction(XRPD) and infrared (IR) spectroscopy at room temperature. TheAbsorptions of intrinsic ions and ZCTC in a solution state arediscussed as well as Transmission properties of the ZCTC crystal. Aneffective method of reducing the surface Reflection loss of ZCTCcrystal is introduced.
基金supported by National Natural Science Foundation of China under Grant No.10775035
文摘The linear and nonlinear optical properties of a hydrogenic donor in a disc-like parabolic quantum dot in the presence of an external magnetic field are studied. The calculations were performed within the effective mass approximation, using the matrix diagonalization method and the compact density-matrix approach. The linear and nonlinear optical absorption coefficients between the ground (L =0) and the first excited state (L = 1) have been examined based on the computed energies and wave functions. We find that the linear, nonlinear third-order, and total optical absorption coefficients are strongly affected by the confinement strength of QDs, the external magnetic field, and the incident optical intensity.
基金supported by National Natural Science Foundation of China(21401147)Basic Research Program of Natural Science from Shaanxi Provincial Government(2015JQ2032)+2 种基金Scientific Research Program from Education Department of Shaanxi Provincial Government(2013JK0654)Opening Foundation from State Key Laboratory of Coordination Chemistry in Nanjing University(201219)the Program for Distinguished Young Scholars of Xi’an Polytechnic University(201403)
文摘A chiral lanthanide metal-organic framework based on enantiopure camphoric acid (D-H2cam), [Nd3(D-cam)8(H2O)4Cl]n (1), has been synthesized and characterized by single-crystal X-ray structural analysis, elemental analysis, IR, thermal gravimetric, and X-ray powder diffraction. Crystal data for the title compound are as follows: orthorhombic system, space group P212121 with a = 13.8287(7), b = 14.0715(7), c = 25.7403(12) A^°, V = 5008.8(4) A^°3, Mr = 1333.08, Z = 4, F(000) = 2644, Dc = 1.768 g/cm^3, μ(MoKα) = 3.189 mm^-1, the final R = 0.0351 and wR = 0.0814 (I 〉 2σ(I)). Compound 1 displays an 8-connected bcu topology 3D framework and hydrogen-bonding interactions stabilize the solid-state structure. The vibrational circular dichroism (VCD) spectrum and second-order nonlinear optical effect of compound 1 have been studied in the solid state.
基金This work was supported by the Postdoctoral Science Foundation of Guangdong Province (No. 9644) and the Natural Science Fund of Guangdong Province(No. 990629).
文摘A new organic/inorganic hybrid nonlinear optical (NLO) material was developed by the sol-gel process of an alkoxysilane dye with tetraethoxysilane. A NLO moiety based on 4-nitro-4 ' -hydroxy azobenzene was covalently bonded to the triethoxysilane derivative, i.e, gamma -isocyanatopropyl triethoxysilane. The preparation process and properties of the sol-gel derived NLO polymer were studied and characterized by SEM, FTIR,H-1-NMR, UV-Vis, DSC and second harmonic generation (SHG) measurement. The results indicated that the chemical bonding of the chromophores to the inorganic SiO2 networks induces low dipole alignment relaxation and preferable orientational stability. The SHG measurements also showed that the bonded polymer film containing 75 wt% of the akoxysilane dye has a high electro-optic coefficient (r(33)) of 7.1 pm/V at 1.1 mum wavelength, and exhibit good SHG stability, the r(33) values can maintain about 92.7% of its initial value at room temperature for 90 days, and can maintain about 59.3% at 100 degreesC for 300 min.
文摘On the basis of adding the bond functions (3s 3p 2d) to the basis sets 6-311G ( 2d 2p ) for increasing the efficiency of the basis sets , we have carried out the MP2 calculations of nonlinear optical properties includintg dipole moment uo,polarizibili- ty ao and hyperpolarizability , for CH4-nFn (n = 1 , 2 , 3). The results are in good a- greement with those of experimentsl The roles of the bond functions in the calcula- tions are shown , i. e., the improved values of the properties are about 2%-7% at the SCF level and about 6%-30% at the correlated level (MP2). It is shown that the more important role of the bond functions in calculating is the im- provement of the effects of the corrections of electronic correlations and the increase of the effects is in the order of. In addition , it is also shown that the cal-, culated value of a property does not change with the bond-function location in our calculations except for the regions close to the nuclei in a molecule.
文摘Dond function basis sets have been used to calculate the molecular nonlinear optical properties which include hyperpolarizability βo , polarizability ao , and dipole moment μo for six molecules. The calculations at the fourth-order Moller-Plesset approximation (MP4) have recovered more than 90% of the experimental values βo , comparecl to that as low as 75% by the other authors. The calculated values of αo and iuo are also in good agreement with those of experiments and superior to that from other work. It is shown that the bond functions improve the calculated results at SCF level and especially at the level of the correction of electronic correlation (MP2 and MP4).
基金This work was supported by the NNSFC (20476034 NSFC/HKUST43)+1 种基金 NSF of Guangdong Province (000489) and SRF for ROCS State Education Ministry.
文摘Static second-order nonlinear optical effects of amino acid zinc(II) porphyrins 1, 2, 3 and 4 were calculated by the TDHF/PM3 method based on the molecular structures optimized at the semiempirical PM3 quantum chemistry level, showing due to the cancellation of symmetric center, these amino acid zinc(II) porphyrins exhibit second order nonlinear optical response. The analysis of β components indicated that these amino acid zinc(II) porphyrins are of multipola- rizabilities, and they may be ascribed as the “mixture” of octupolar and dipoar molecules with ||βJ=3||/||βJ=1|| ≈ 5. It is found that there are no significant differences between the static β values of non-chiral and chiral amino acid zinc(II) porphyrins. However, the βxyz component, which is quite important to quadratic macroscopic χ (2) susceptibility of chiral material, is increased significantly with the increase of side chain group of amino acids.
基金supported by the National Natural Science Foundation of China(21172161)
文摘UV-Vis spectrum and the third-order nonlinear optical properties of the chiral camphor-derived β-diketonate have been studied at the B3LYP/6-31G* level. The results showed that the introduction of electron-drawing group -CF3 and -C3F7 on β-diketonate made the strongest absorption peak red-shift and the lowest energy absorption blue-shied. Introduction of -OC2H5 on the benzene or pyridine ring made the lowest energy absorption blue-shift. When the -C2H3 was introduced on the benzene or pyridine ring, the lowest energy absorption was red-shifted. Introduction of electron-donating group on β-diketonate can enlarge their nonlinear optical properties. On the contrary, the introduction of electron-drawing group dropped it down.
基金Supported by National Basic Research Program of China under Grant Nos 2011CB922200 and 2013CB922303
文摘We quantitatively investigate the third-order optical nonlinear response of Co-doped ZnO thin films prepared by magnetron sputtering using the Z-scan method. The two-photon absorption and optical Kerr effect are revealed to contribute to the third-order nonlinear response of the Co-doped ZnO films. The nonlinear absorption coefficient β is determined to be approximately 8.8 × 10-5 cm/W and the third-order nonlinear susceptibility X(3) is 2.93 × 10-6 esu. The defect-associated energy levels within the band gap are suggested to be responsible for the enhanced nonlinear response observed in Co-doped ZnO films.
基金supported in part by grants from the National Institutes of Health (R01CA213149,R01CA241618).
文摘Nonlinear optical imaging is a versatile tool that has been proven to be exceptionally useful in various research fields.However,due to the use of photomultiplier tubes(PMTs),the wide application of nonlinear optical imaging is limited by the incapability of imaging under am-bient light.In this paper,we propose and demonstrate a new optical imaging detection method based on optical parametric amplification(OPA).As a nonlinear optical process,OPA in-trinsically rejects ambient light photons by coherence gating.Periodical poled lithium niobate(PPLN)crystals are used in this study as the media for OPA.Compared to bulk nonlinear optical crystals,PPLN crystals support the generation of OPA signal with lower pump power.Therefore,this characteristic of PPLN crystals is particularly beneficial when using high-repetition-rate lasers,which facilitate high-speed optical signal detection,such as in spec-troscopy and imaging.A PPLN-based OPA system was built to amplify the emitted imaging signal from second harmonic generation(SHG)and coherent anti-Stokes Raman scattering(CARS)microscopy imaging,and the amplified optical signal was strong enough to be detected by a biased photodiode under ordinary room light conditions.With OPA detection,ambient-light-on SHG and CARS imaging becomes possible,and achieves a similar result as PMT detection under strictly dark environments.These results demonstrate that OPA can be used as a substitute for PMTs in nonlinear optical imaging to adapt it to various applications with complex.light ing conditions.