In electrical circuit analysis, it is often necessary to find the set of all direct current (d.c.) operating points (either voltages or currents) of nonlinear circuits. In general, these nonlinear equations are of...In electrical circuit analysis, it is often necessary to find the set of all direct current (d.c.) operating points (either voltages or currents) of nonlinear circuits. In general, these nonlinear equations are often represented as polynomial systems. In this paper, we address the problem of finding the solutions of nonlinear electrical circuits, which are modeled as systems of n polynomial equations contained in an n-dimensional box. Branch and Bound algorithms based on interval methods can give guaranteed enclosures for the solution. However, because of repeated evaluations of the function values, these methods tend to become slower. Branch and Bound algorithm based on Bernstein coefficients can be used to solve the systems of polynomial equations. This avoids the repeated evaluation of function values, but maintains more or less the same number of iterations as that of interval branch and bound methods. We propose an algorithm for obtaining the solution of polynomial systems, which includes a pruning step using Bernstein Krawczyk operator and a Bernstein Coefficient Contraction algorithm to obtain Bernstein coefficients of the new domain. We solved three circuit analysis problems using our proposed algorithm. We compared the performance of our proposed algorithm with INTLAB based solver and found that our proposed algorithm is more efficient and fast.展开更多
The analysis of circuits is frequently required in the electricity of physics. When analyzing circuits, the general idea is to study the issues related to nonlinear resistance circuits based on commonly used physical ...The analysis of circuits is frequently required in the electricity of physics. When analyzing circuits, the general idea is to study the issues related to nonlinear resistance circuits based on commonly used physical and electrical theory. Generally, circuits can be divided into linear resistance circuits and nonlinear resistance circuits. However, for some nonlinear resistance circuit, a small part of them are decomposed through subsection linearity while most of them are adopted the form of hieroglyph combination for subsection decomposition fitting analysis. For the following contents, the author will adopt curve layout method to analyze nonlinear resistance element and relation characteristics of voltage and current;to state the characteristics and nature of common electronic elements in our life, and concepts of concave resistance and convex resistance;to analyze the characteristics of nonlinear resistance circuits through electrical circuit analysis method based on the electrical theorem of physics;finally, to analyze referring to actual cases, study the veracity, verify the feasibility and scientificity of the adopted analytical approach, apply image graphics of the resistance circuits in the convenient way to solve complicated design problems among actual electrical problems.展开更多
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the ...The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.展开更多
This paper reports a new three-dimensional autonomous chaotic system. It contains six control parameters and three nonlinear terms. Two cross-product terms are respectively in two equations. And one square term is in ...This paper reports a new three-dimensional autonomous chaotic system. It contains six control parameters and three nonlinear terms. Two cross-product terms are respectively in two equations. And one square term is in the third equation. Basic dynamic properties of the new system are investigated by means of theoretical analysis, numerical simulation, sensitivity to initial, power spectrum, Lyapunov exponent, and Poincar~ diagrams. The dynamic properties affected by variable parameters are also analysed. Finally, the chaotic system is simulated by circuit. The results verify the existence and implementation of the system.展开更多
Compact torus(CT)injection is one of the most promising methods for the central fuelling of next-generation reactor-grade fusion devices due to its high density,high velocity,and selfcontained magnetised structure.A n...Compact torus(CT)injection is one of the most promising methods for the central fuelling of next-generation reactor-grade fusion devices due to its high density,high velocity,and selfcontained magnetised structure.A newly compact torus injector(CTI)device in Keda Torus e Xperiment(KTX),named KTX-CTI,was successfully developed and tested at the University of Science and Technology in China.In this study,first,we briefly introduce the basic principles and structure of KTX-CTI,and then,present an accurate circuit model that relies on nonlinear regression analysis(NRA)for studying the current waveform of the formation region.The current waveform,displacement,and velocity of CT plasma in the acceleration region are calculated using this NRA-based one-dimensional point model.The model results were in good agreement with the experiments.The next-step upgrading reference scheme of the KTX-CTI device is preliminarily investigated using this NRA-based point model.This research can provide insights for the development of experiments and future upgrades of the device.展开更多
After years of development, chaotic circuits have possessed many different mathematic forms and multiple realization methods. However, in most of the existing chaotic systems, the nonlinear units are composed of the p...After years of development, chaotic circuits have possessed many different mathematic forms and multiple realization methods. However, in most of the existing chaotic systems, the nonlinear units are composed of the product terms. In this paper, in order to obtain a chaotic oscillator with higher nonlinearity and complexity to meet the needs of utilization, we discuss a novel chaotic system whose nonlinear term is realized by an exponential term. The new exponential chaotic oscillator is constructed by adding an exponential term to the classical Lüsystem. To further investigate the dynamic characteristics of the oscillator, classical theoretical analyses have been performed, such as phase diagrams, equilibrium points, stabilities of the system,Poincaré mappings, Lyapunov exponent spectrums, and bifurcation diagrams. Then through the National Institute of Standards and Technology(NIST) statistical test, it is proved that the chaotic sequence generated by the exponential chaotic oscillator is more random than that produced by the Lü system. In order to further verify the practicability of this chaotic oscillator, by applying the improved modular design method, the system equivalent circuit has been realized and proved by the Multisim simulation. The theoretical analysis and the Multisim simulation results are in good agreement.展开更多
It is important but difficult to analyze the electromagnetic environment effect(E3) in the designing of modern airborne,sea,space,and ground systems.Thus a hybrid algorithm of time domain integral equation,finite diff...It is important but difficult to analyze the electromagnetic environment effect(E3) in the designing of modern airborne,sea,space,and ground systems.Thus a hybrid algorithm of time domain integral equation,finite difference time domain and modified nodal analysis(TDIE-FDTD-MNA) is developed to analyze the E3 of complex systems with cables and nonlinear circuit structures.The plane wave time domain(PWTD) enhanced TDIE method is adopted to solve field problems.The higher order FDTD(2,4) is adopted to solve cable problems.The MNA is adopted to obtain the response of complex circuits(with nonlinear structures).Numerical examples demonstrate the effectiveness of the proposed algorithm.展开更多
A new efficient algorithm is given for calculation of the steady-state response of non-linear circuit driven by multifrequency signals, which are possibly made up of incommen-surable frequencies. The algorithm is part...A new efficient algorithm is given for calculation of the steady-state response of non-linear circuit driven by multifrequency signals, which are possibly made up of incommen-surable frequencies. The algorithm is particularly useful when the steady state responseis not periodic. The algorithm is much more efficient than numerical integration methods for circuitscontaining only a few nonlinear elements, compared with the number of inductors andcapacitors. It is based on a combined application of the "harmonic balancen" and "leastsquare approach", and does not require any transient analysis. The algorithm can be usedin a microcomputer.展开更多
研究了2015年我国东北、华北和华东三个大区电网的联网方案,针对不同联网方案下系统的低频振荡特性进行了分析和比较,证明了在系统中的主要大型发电厂配置电力系统稳定器(Power System Stabilizer,PSS)可以改善低频振荡的阻尼特性,并验...研究了2015年我国东北、华北和华东三个大区电网的联网方案,针对不同联网方案下系统的低频振荡特性进行了分析和比较,证明了在系统中的主要大型发电厂配置电力系统稳定器(Power System Stabilizer,PSS)可以改善低频振荡的阻尼特性,并验证了所配置的PSS的有效性。文章还对系统负荷的阻尼特性进行了灵敏度分析,最后对各种交流和直流故障下系统的暂态稳定特性进行了研究。初步结果表明,将三个大区电网互联为一个大同步电网在技术上是可行的。展开更多
文摘In electrical circuit analysis, it is often necessary to find the set of all direct current (d.c.) operating points (either voltages or currents) of nonlinear circuits. In general, these nonlinear equations are often represented as polynomial systems. In this paper, we address the problem of finding the solutions of nonlinear electrical circuits, which are modeled as systems of n polynomial equations contained in an n-dimensional box. Branch and Bound algorithms based on interval methods can give guaranteed enclosures for the solution. However, because of repeated evaluations of the function values, these methods tend to become slower. Branch and Bound algorithm based on Bernstein coefficients can be used to solve the systems of polynomial equations. This avoids the repeated evaluation of function values, but maintains more or less the same number of iterations as that of interval branch and bound methods. We propose an algorithm for obtaining the solution of polynomial systems, which includes a pruning step using Bernstein Krawczyk operator and a Bernstein Coefficient Contraction algorithm to obtain Bernstein coefficients of the new domain. We solved three circuit analysis problems using our proposed algorithm. We compared the performance of our proposed algorithm with INTLAB based solver and found that our proposed algorithm is more efficient and fast.
文摘The analysis of circuits is frequently required in the electricity of physics. When analyzing circuits, the general idea is to study the issues related to nonlinear resistance circuits based on commonly used physical and electrical theory. Generally, circuits can be divided into linear resistance circuits and nonlinear resistance circuits. However, for some nonlinear resistance circuit, a small part of them are decomposed through subsection linearity while most of them are adopted the form of hieroglyph combination for subsection decomposition fitting analysis. For the following contents, the author will adopt curve layout method to analyze nonlinear resistance element and relation characteristics of voltage and current;to state the characteristics and nature of common electronic elements in our life, and concepts of concave resistance and convex resistance;to analyze the characteristics of nonlinear resistance circuits through electrical circuit analysis method based on the electrical theorem of physics;finally, to analyze referring to actual cases, study the veracity, verify the feasibility and scientificity of the adopted analytical approach, apply image graphics of the resistance circuits in the convenient way to solve complicated design problems among actual electrical problems.
基金This project was supported by the National Nature Science Foundation of China(60372001)
文摘The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.
文摘This paper reports a new three-dimensional autonomous chaotic system. It contains six control parameters and three nonlinear terms. Two cross-product terms are respectively in two equations. And one square term is in the third equation. Basic dynamic properties of the new system are investigated by means of theoretical analysis, numerical simulation, sensitivity to initial, power spectrum, Lyapunov exponent, and Poincar~ diagrams. The dynamic properties affected by variable parameters are also analysed. Finally, the chaotic system is simulated by circuit. The results verify the existence and implementation of the system.
基金supported by the National Key Research and Development Program of China(Nos.2017YFE0300500,2017YFE0300501)the Institute of Energy,Hefei Comprehensive National Science Center(Nos.19KZS205 and 21KZS202)+3 种基金the International Partnership Program of Chinese Academy of Sciences(No.Y16YZ17271)National Natural Science Foundation of China(Nos.11905143 and 12105088)Users with Excellence Program of Hefei Science Center CAS(No.2020HSC-UE008)The University Synergy Innovation Program of Anhui Province(Nos.GXXT-2021-014,GXXT2021-029)。
文摘Compact torus(CT)injection is one of the most promising methods for the central fuelling of next-generation reactor-grade fusion devices due to its high density,high velocity,and selfcontained magnetised structure.A newly compact torus injector(CTI)device in Keda Torus e Xperiment(KTX),named KTX-CTI,was successfully developed and tested at the University of Science and Technology in China.In this study,first,we briefly introduce the basic principles and structure of KTX-CTI,and then,present an accurate circuit model that relies on nonlinear regression analysis(NRA)for studying the current waveform of the formation region.The current waveform,displacement,and velocity of CT plasma in the acceleration region are calculated using this NRA-based one-dimensional point model.The model results were in good agreement with the experiments.The next-step upgrading reference scheme of the KTX-CTI device is preliminarily investigated using this NRA-based point model.This research can provide insights for the development of experiments and future upgrades of the device.
基金supported by the National Natural Science Foundation of China(61871429)the Natural Science Foundation of Zhejiang Province(LY18F010012)。
文摘After years of development, chaotic circuits have possessed many different mathematic forms and multiple realization methods. However, in most of the existing chaotic systems, the nonlinear units are composed of the product terms. In this paper, in order to obtain a chaotic oscillator with higher nonlinearity and complexity to meet the needs of utilization, we discuss a novel chaotic system whose nonlinear term is realized by an exponential term. The new exponential chaotic oscillator is constructed by adding an exponential term to the classical Lüsystem. To further investigate the dynamic characteristics of the oscillator, classical theoretical analyses have been performed, such as phase diagrams, equilibrium points, stabilities of the system,Poincaré mappings, Lyapunov exponent spectrums, and bifurcation diagrams. Then through the National Institute of Standards and Technology(NIST) statistical test, it is proved that the chaotic sequence generated by the exponential chaotic oscillator is more random than that produced by the Lü system. In order to further verify the practicability of this chaotic oscillator, by applying the improved modular design method, the system equivalent circuit has been realized and proved by the Multisim simulation. The theoretical analysis and the Multisim simulation results are in good agreement.
基金supported by National Basic Research Program of China(973 Program)
文摘It is important but difficult to analyze the electromagnetic environment effect(E3) in the designing of modern airborne,sea,space,and ground systems.Thus a hybrid algorithm of time domain integral equation,finite difference time domain and modified nodal analysis(TDIE-FDTD-MNA) is developed to analyze the E3 of complex systems with cables and nonlinear circuit structures.The plane wave time domain(PWTD) enhanced TDIE method is adopted to solve field problems.The higher order FDTD(2,4) is adopted to solve cable problems.The MNA is adopted to obtain the response of complex circuits(with nonlinear structures).Numerical examples demonstrate the effectiveness of the proposed algorithm.
文摘A new efficient algorithm is given for calculation of the steady-state response of non-linear circuit driven by multifrequency signals, which are possibly made up of incommen-surable frequencies. The algorithm is particularly useful when the steady state responseis not periodic. The algorithm is much more efficient than numerical integration methods for circuitscontaining only a few nonlinear elements, compared with the number of inductors andcapacitors. It is based on a combined application of the "harmonic balancen" and "leastsquare approach", and does not require any transient analysis. The algorithm can be usedin a microcomputer.
文摘研究了2015年我国东北、华北和华东三个大区电网的联网方案,针对不同联网方案下系统的低频振荡特性进行了分析和比较,证明了在系统中的主要大型发电厂配置电力系统稳定器(Power System Stabilizer,PSS)可以改善低频振荡的阻尼特性,并验证了所配置的PSS的有效性。文章还对系统负荷的阻尼特性进行了灵敏度分析,最后对各种交流和直流故障下系统的暂态稳定特性进行了研究。初步结果表明,将三个大区电网互联为一个大同步电网在技术上是可行的。