In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate pa...In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate parabolic hyperbolic equation, we propose a generalization of entropy formulation and prove existence and uniqueness result without any structure condition.展开更多
A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is d...A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.展开更多
The authors of this article study the existence and uniqueness of weak so- lutions of the initial-boundary value problem for ut = div((|u|^δ + d0)|↓△|^p(x,t)-2↓△u) + f(x, t) (0 〈 δ 〈 2). They a...The authors of this article study the existence and uniqueness of weak so- lutions of the initial-boundary value problem for ut = div((|u|^δ + d0)|↓△|^p(x,t)-2↓△u) + f(x, t) (0 〈 δ 〈 2). They apply the method of parabolic regularization and Galerkin's method to prove the existence of solutions to the mentioned problem and then prove the uniqueness of the weak solution by arguing by contradiction. The authors prove that the solution approaches 0 in L^2 (Ω) norm as t →∞.展开更多
In this paper, the existence of solutions for discontinuous nonlinear parabolic differential IBVP is proved by using a more generalized monotone iterative method. Moreover, the convergence of this method is discussed.
In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations (△-e/et)u(x,t)+q(x,t)u^p(x,t)=0 and nonlinear parabolic equations (△-e/et)u(x,...In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations (△-e/et)u(x,t)+q(x,t)u^p(x,t)=0 and nonlinear parabolic equations (△-e/et)u(x,t)+h(x,t)u^p(x,t)=0(p 〉 1) on Riemannian manifolds.As applications, we obtain some theorems of Liouville type for positive ancient solutions of such equations. Our results generalize that of Souplet-Zhang ([1], Bull. London Math. Soc. 38(2006), 1045-1053) and the author ([2], Nonlinear Anal. 74 (2011), 5141-5146).展开更多
In this paper, we consider gradient estimates for positive solutions to the following weighted nonlinear parabolic equations on a complete smooth metric measure space with only Bakry-Émery Ricci tensor bounded be...In this paper, we consider gradient estimates for positive solutions to the following weighted nonlinear parabolic equations on a complete smooth metric measure space with only Bakry-Émery Ricci tensor bounded below: One is $${u_t} = {\Delta _f}u + au\log u + bu$$ with a, b two real constants, and another is $${u_t} = {\Delta _f}u + \lambda {u^\alpha }$$ with λ, α two real constants. We obtain local Hamilton-Souplet-Zhang type gradient estimates for the above two nonlinear parabolic equations. In particular, our estimates do not depend on any assumption on f.展开更多
We study the Dirichlet problem associated to strongly nonlinear parabolic equations involving p(x) structure in W;L;(Q). We prove the existence of weak solutions by applying Galerkin’s approximation method.
In this paper we discuss the bounds for the modulus of continuity of the blow-up time with respect to three parameters of λ, h, and p respectively for the initial boundary value problem of the semilinear parabolic eq...In this paper we discuss the bounds for the modulus of continuity of the blow-up time with respect to three parameters of λ, h, and p respectively for the initial boundary value problem of the semilinear parabolic equation.展开更多
The phenomenon of extinction is an important property of solutions for many evolutionary equa-tions. In this paper, a numerical simulation for computing the extinction time of nonnegative solu-tions for some nonlinear...The phenomenon of extinction is an important property of solutions for many evolutionary equa-tions. In this paper, a numerical simulation for computing the extinction time of nonnegative solu-tions for some nonlinear parabolic equations on general domains is presented. The solution algo-rithm utilizes the Donor-cell scheme in space and Euler’s method in time. Finally, we will give some numerical experiments to illustrate our algorithm.展开更多
This paper deals with the extinction of weak solutions of the initial and boundary value problem for ut = div((|u|σ + d0)| u|^p(x)-2 u). When the exponent belongs to different intervals, the solution has ...This paper deals with the extinction of weak solutions of the initial and boundary value problem for ut = div((|u|σ + d0)| u|^p(x)-2 u). When the exponent belongs to different intervals, the solution has different singularity (vanishing in finite time).展开更多
This paper deals with some parabolic equations,where the reaction and the boundary flux are taken of some general forms.We study the explicit blow-up time estimates according to the different coupled relationship,incl...This paper deals with some parabolic equations,where the reaction and the boundary flux are taken of some general forms.We study the explicit blow-up time estimates according to the different coupled relationship,including the lower and upper bounds of blow-up time for every dimension of space domains.As examples,the results could be used to so many completely coupled models.展开更多
In this paper,we consider a semilinear parabolic equation with a general nonlinearity.We establish a new finite time blow-up criterion and also derive the upper bound for the blow-up time.The results partially general...In this paper,we consider a semilinear parabolic equation with a general nonlinearity.We establish a new finite time blow-up criterion and also derive the upper bound for the blow-up time.The results partially generalize some recent ones obtained by He Ma et al.展开更多
In this paper the nonlinear reaction diffusion problems with ultraparabolic equations are considered. By using comparison theorem, the existence, uniqueness and asymptotic behavior of solution for the problem are stud...In this paper the nonlinear reaction diffusion problems with ultraparabolic equations are considered. By using comparison theorem, the existence, uniqueness and asymptotic behavior of solution for the problem are studied.展开更多
This paper gives the sufficient and necessary conditions of existence of global solutions and decay estimates of the solutions for the initial boundary value problem of some nonlinear parabolic equations with small in...This paper gives the sufficient and necessary conditions of existence of global solutions and decay estimates of the solutions for the initial boundary value problem of some nonlinear parabolic equations with small initial energy and the nonlinear power less than Sobolev critical value. The existence, nonexistence and the decay estimates of global solutions are considered. The conditions that initial energy is small and nonlinear power is less than Sobolev critical value is imposed.展开更多
According to the variational analysis and the potential well argument, we get the optimal conditions of global existence and blow-up for a type of nonlinear parabolic equations. Furthermore, we give its application in...According to the variational analysis and the potential well argument, we get the optimal conditions of global existence and blow-up for a type of nonlinear parabolic equations. Furthermore, we give its application in the instability of the steady states.展开更多
The nonlinear parabolized stability equations(NPSEs)approach is widely used to study the evolution of disturbances in hypersonic boundary layers owing to its high computational efficiency.However,divergence of the NPS...The nonlinear parabolized stability equations(NPSEs)approach is widely used to study the evolution of disturbances in hypersonic boundary layers owing to its high computational efficiency.However,divergence of the NPSEs will occur when disturbances imposed at the inlet no longer play a leading role or when the nonlinear effect becomes very strong.Two major improvements are proposed here to deal with the divergence of the NPSEs.First,all disturbances are divided into two types:dominant waves and non-dominant waves.Disturbances imposed at the inlet or playing a leading role are defined as dominant waves,with all others being defined as non-dominant waves.Second,the streamwise wavenumbers of the non-dominant waves are obtained using the phase-locked method,while those of the dominant waves are obtained using an iterative method.Two reference wavenumbers are introduced in the phase-locked method,and methods for calculating them for different numbers of dominant waves are discussed.Direct numerical simulation(DNS)is performed to verify and validate the predictions of the improved NPSEs in a hypersonic boundary layer on an isothermal swept blunt plate.The results from the improved NPSEs approach are in good agreement with those of DNS,whereas the traditional NPSEs approach is subject to divergence,indicating that the improved NPSEs approach exhibits greater robustness.展开更多
A class of nonlinear parabolic equation on a polygonal domain Ω R2 is inves- tigated in this paper. We introduce a finite element method on overlapping non-matching grids for the nonlinear parabolic equation based o...A class of nonlinear parabolic equation on a polygonal domain Ω R2 is inves- tigated in this paper. We introduce a finite element method on overlapping non-matching grids for the nonlinear parabolic equation based on the partition of unity method. We give the construction and convergence analysis for the semi-discrete and the fully discrete finite element methods. Moreover, we prove that the error of the discrete variational problem has good approximation properties. Our results are valid for any spatial dimensions. A numerical example to illustrate the theoretical results is also given.展开更多
A new alternating direction (AD) finite element (FE) scheme for 3-dimensional nonlinear parabolic equation and parabolic integro-differential equation is studied. By using AD,the 3-dimensional problem is reduced to a ...A new alternating direction (AD) finite element (FE) scheme for 3-dimensional nonlinear parabolic equation and parabolic integro-differential equation is studied. By using AD,the 3-dimensional problem is reduced to a family of single space variable problems, calculation work is simplified; by using FE, high accuracy is kept; by using various techniques for priori estimate for differential equations such as inductive hypothesis reasoning, the difficulty arising from the nonlinearity is treated. For both FE and ADFE schemes, the convergence properties are rigorously demonstrated, the optimal H1- and L2-norm space estimates and the O((△t)2) estimate for time variable are obtained.展开更多
An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space var...An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space variable problems, the calculation is simplified; by using a local approxima-tion of the coefficients based on patches of finite elements, the coefficient matrix is updated at each time step; by using Ritz-Volterra projection, integration by part and other techniques, the influence coming from the integral term is treated; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity is treated. For both Galerkin and A. D. I. Galerkin schemes the con-vergence properties are rigorously demonstrated, the optimal H^1-norm and L^2-norm estimates are obtained.展开更多
文摘In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate parabolic hyperbolic equation, we propose a generalization of entropy formulation and prove existence and uniqueness result without any structure condition.
基金Supported by the National Natural Science Foundation of China (10671184)
文摘A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.
基金Supported by NSFC (10771085)Graduate Innovation Fund of Jilin University(20111034)the 985 program of Jilin University
文摘The authors of this article study the existence and uniqueness of weak so- lutions of the initial-boundary value problem for ut = div((|u|^δ + d0)|↓△|^p(x,t)-2↓△u) + f(x, t) (0 〈 δ 〈 2). They apply the method of parabolic regularization and Galerkin's method to prove the existence of solutions to the mentioned problem and then prove the uniqueness of the weak solution by arguing by contradiction. The authors prove that the solution approaches 0 in L^2 (Ω) norm as t →∞.
文摘In this paper, the existence of solutions for discontinuous nonlinear parabolic differential IBVP is proved by using a more generalized monotone iterative method. Moreover, the convergence of this method is discussed.
基金supported by the National Science Foundation of China(41275063 and 11401575)
文摘In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations (△-e/et)u(x,t)+q(x,t)u^p(x,t)=0 and nonlinear parabolic equations (△-e/et)u(x,t)+h(x,t)u^p(x,t)=0(p 〉 1) on Riemannian manifolds.As applications, we obtain some theorems of Liouville type for positive ancient solutions of such equations. Our results generalize that of Souplet-Zhang ([1], Bull. London Math. Soc. 38(2006), 1045-1053) and the author ([2], Nonlinear Anal. 74 (2011), 5141-5146).
文摘In this paper, we consider gradient estimates for positive solutions to the following weighted nonlinear parabolic equations on a complete smooth metric measure space with only Bakry-Émery Ricci tensor bounded below: One is $${u_t} = {\Delta _f}u + au\log u + bu$$ with a, b two real constants, and another is $${u_t} = {\Delta _f}u + \lambda {u^\alpha }$$ with λ, α two real constants. We obtain local Hamilton-Souplet-Zhang type gradient estimates for the above two nonlinear parabolic equations. In particular, our estimates do not depend on any assumption on f.
文摘We study the Dirichlet problem associated to strongly nonlinear parabolic equations involving p(x) structure in W;L;(Q). We prove the existence of weak solutions by applying Galerkin’s approximation method.
基金The NSF (10572154,60873088) of Chinathe NCET-06-0731the NSF (7004569,7003624) of Guangdong,China
文摘In this paper we discuss the bounds for the modulus of continuity of the blow-up time with respect to three parameters of λ, h, and p respectively for the initial boundary value problem of the semilinear parabolic equation.
文摘The phenomenon of extinction is an important property of solutions for many evolutionary equa-tions. In this paper, a numerical simulation for computing the extinction time of nonnegative solu-tions for some nonlinear parabolic equations on general domains is presented. The solution algo-rithm utilizes the Donor-cell scheme in space and Euler’s method in time. Finally, we will give some numerical experiments to illustrate our algorithm.
基金Partially supported by the NSF(11271154)of China the 985 program of Jilin University
文摘This paper deals with the extinction of weak solutions of the initial and boundary value problem for ut = div((|u|σ + d0)| u|^p(x)-2 u). When the exponent belongs to different intervals, the solution has different singularity (vanishing in finite time).
基金Supported by Shandong Provincial Natural Science Foundation of China。
文摘This paper deals with some parabolic equations,where the reaction and the boundary flux are taken of some general forms.We study the explicit blow-up time estimates according to the different coupled relationship,including the lower and upper bounds of blow-up time for every dimension of space domains.As examples,the results could be used to so many completely coupled models.
基金Supported by the Nation Natural Science Foundation of China(Grant No.11271141)Chongqing Science and Technology Commission(Grant No.cstc2018jcyjAX0787).
文摘In this paper,we consider a semilinear parabolic equation with a general nonlinearity.We establish a new finite time blow-up criterion and also derive the upper bound for the blow-up time.The results partially generalize some recent ones obtained by He Ma et al.
基金Supported by the NNSF of China(40676016,10471039)the National Key Project for Basics Research(2003CB415101-03 and 2004CB418304)+1 种基金the Key Project of the Chinese Academy of Sciences(KZCX3-SW-221)in part by E-Institutes of Shanghai Municipal Education Commission(N.E03004).
文摘In this paper the nonlinear reaction diffusion problems with ultraparabolic equations are considered. By using comparison theorem, the existence, uniqueness and asymptotic behavior of solution for the problem are studied.
文摘This paper gives the sufficient and necessary conditions of existence of global solutions and decay estimates of the solutions for the initial boundary value problem of some nonlinear parabolic equations with small initial energy and the nonlinear power less than Sobolev critical value. The existence, nonexistence and the decay estimates of global solutions are considered. The conditions that initial energy is small and nonlinear power is less than Sobolev critical value is imposed.
基金supported by National Natural Science Foundation of China(11126336 and 11201324)New Teachers’Fund for Doctor Stations,Ministry of Education(20115134120001)+1 种基金Fok Ying Tuny Education Foundation(141114)Youth Fund of Sichuan Province(2013JQ0027)
文摘According to the variational analysis and the potential well argument, we get the optimal conditions of global existence and blow-up for a type of nonlinear parabolic equations. Furthermore, we give its application in the instability of the steady states.
基金the National Natural Science Foundation of China(Grant Nos.12072232 and 11672351)the National Key Project of China(Grant No.GJXM92579).
文摘The nonlinear parabolized stability equations(NPSEs)approach is widely used to study the evolution of disturbances in hypersonic boundary layers owing to its high computational efficiency.However,divergence of the NPSEs will occur when disturbances imposed at the inlet no longer play a leading role or when the nonlinear effect becomes very strong.Two major improvements are proposed here to deal with the divergence of the NPSEs.First,all disturbances are divided into two types:dominant waves and non-dominant waves.Disturbances imposed at the inlet or playing a leading role are defined as dominant waves,with all others being defined as non-dominant waves.Second,the streamwise wavenumbers of the non-dominant waves are obtained using the phase-locked method,while those of the dominant waves are obtained using an iterative method.Two reference wavenumbers are introduced in the phase-locked method,and methods for calculating them for different numbers of dominant waves are discussed.Direct numerical simulation(DNS)is performed to verify and validate the predictions of the improved NPSEs in a hypersonic boundary layer on an isothermal swept blunt plate.The results from the improved NPSEs approach are in good agreement with those of DNS,whereas the traditional NPSEs approach is subject to divergence,indicating that the improved NPSEs approach exhibits greater robustness.
基金Supported by the Natural Science Foundation of Hunan under Grant No. 06C713.
文摘A class of nonlinear parabolic equation on a polygonal domain Ω R2 is inves- tigated in this paper. We introduce a finite element method on overlapping non-matching grids for the nonlinear parabolic equation based on the partition of unity method. We give the construction and convergence analysis for the semi-discrete and the fully discrete finite element methods. Moreover, we prove that the error of the discrete variational problem has good approximation properties. Our results are valid for any spatial dimensions. A numerical example to illustrate the theoretical results is also given.
基金The project is supported by China National Key Program for Developing Basic Science G1999032801 and the National Natural Science Foundation of China (No. 19932010).
文摘A new alternating direction (AD) finite element (FE) scheme for 3-dimensional nonlinear parabolic equation and parabolic integro-differential equation is studied. By using AD,the 3-dimensional problem is reduced to a family of single space variable problems, calculation work is simplified; by using FE, high accuracy is kept; by using various techniques for priori estimate for differential equations such as inductive hypothesis reasoning, the difficulty arising from the nonlinearity is treated. For both FE and ADFE schemes, the convergence properties are rigorously demonstrated, the optimal H1- and L2-norm space estimates and the O((△t)2) estimate for time variable are obtained.
文摘An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space variable problems, the calculation is simplified; by using a local approxima-tion of the coefficients based on patches of finite elements, the coefficient matrix is updated at each time step; by using Ritz-Volterra projection, integration by part and other techniques, the influence coming from the integral term is treated; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity is treated. For both Galerkin and A. D. I. Galerkin schemes the con-vergence properties are rigorously demonstrated, the optimal H^1-norm and L^2-norm estimates are obtained.